1) Solve: |-3|+|3|-2|-3|= D. 3x + 2E. 3x + 4 - 2) solve: $(2-3\sqrt{2})(3+2\sqrt{2})$ $6+4\sqrt{2}-9\sqrt{2}-12$ - 3) What is the value of $x^2 + x^0$ when x = 4? - 16+1= 17 - 4) For all x, which of the following is a factor of A. x-2B. 3x-4C. 3x-2(3X+2) (X-4) # **Sect 2.2: Applied Problems** # Ex. 1: Average A student in an algebra course has test scores of 64 and 78. What score on a third test will give the student an average of 80? # Ex 2: Sales A clothing store holding a clearance sale advertises that all prices have been discounted 20%. If a shirt is on sale for \$28, what was its presale price? $$\begin{array}{c} . \ X - .2X = 28 \\ \underline{.8X} = 28 \\ \underline{.8} \\ X = 35 \end{array}$$ #### Ex 3: Investment An investment firm has \$100,000 to invest for a client and decides to invest it in two stocks, A and B. The expected annual rate of return, or simple interest, for stock A is 15%, but there is some risk involved, and the client does not wish to invest more than \$50,000 in this stock. The annual rate of return on the more stable stock B is anticipated to be 10%. Determine whether there is a way of investing the money so that the annual interest is \$12,000. | annuai interest | 18 \$12,000. | X : | | |--|---------------|----------|--| | | Principal (P) | Rate (R) | Interest (I=PRT) | | Stock A | X | .15 | .15X | | Stock B | 100,000 - X | ./ | ►. I (100,000-×) | | 12,000=.19 100,000=A 100,000=40 60,000=8 | HB | 5 5 1 | 12,000 20 | ## Ex 4: Mixture Problem A chemist has 10 milliliters of a solution that contains a 30% concentration of acid. How many milliliters of pure acid must be added in order to increase the concentration to 50%? | | Amount of Solution | % | Amount of Total
Solution | |-----------|--------------------|---|-----------------------------| | Solution | | | | | Pure Acid | | | | | Mixture | | | | ## Ex 5: Distance Two cities are connected by means of a highway. A car leaves city B at 1:00 pm and travels at a constant rate of 40 mi/hr toward city C. Thirty minutes later, another car leaves B and travels toward C at a constant rate of 55 mi/hr. If the lengths of the cars are disregarded, at what time will the second car reach the first car? | <u> </u> | | | | | | | |------------|----------|----------|-----------------|--|--|--| | | Rate (r) | Time (t) | Distance (d=rt) | | | | | First Car | 40 | X | 40X | | | | | Second Car | 55 | X-30 | 55(X-30) | | | | | Pate of first car: 40mph | | 2:50 | |-------------------------------|--------|--------------| | Travels for 1/2 hour >1 | Omiles | | | Jeconol Car: 35 mh 15 mh f.x. | | 4 minutes | | 40x=55(x-30) | 80 | I wall about | | X=110 | | | | 50 | | | ### Ex 6: Geometric Problem A grain-elevator hopper is to be constructed as shown with a right circular cylinder of radius 2 ft and altitude *h* feet on top of a right circular cone whose altitude is one-half that of the cylinder. How tall is the whole hopper if the volume is 500 cubic feet? 500 = cone + cylinder 500 = $$\frac{1}{3}\pi r^{2}h + \pi r^{2}h$$ 500 = $\frac{1}{3}\pi r^{2}h + \pi r^{2}(2h)$ 3500 = $\frac{1}{3}\pi r^{2}h + \frac{1}{3}\pi r^{2}(2h)$ 1500 = $\frac{1}{3}\pi r^{2}h + \frac{1}{3}\pi r^{2}h$