8.1 Single-Payment Loans

A **single-payment loan** is a loan that you repay with one payment after a special period of time. A business may be short of funds and need to borrow money to meet its payroll or pay for inventory and supplies. The business owner could sing a promissory note with its financial institution. A **promissory note** is a written promise to pay a certain sum of money one a specific date in the future. The maturity value of the loan is the total amount you must repay. It includes both the principal and interest owed. **Principal** is the amount borrowed.

A loan's term is the amount of time for which the loan is granted. For example, a single-payment loan may be granted for a number of years, months, or days. When the term is specific number of days, the lending agency may calculate interest in one of two ways:

- 1. **Ordinary interest** is based on 360-day year.
- 2. **Exact interest** is based on 365-day year.

The following formulas are used:

Interest = Principal X Rate X Time

Ordinary Interest = Principal X Rate X $\frac{\text{Time}}{360}$

Exact Interest = Principal X Rate X
$$\frac{\text{Time}}{365}$$

Maturity Value = Principal + Interest

Ex1: Anita Sloan's bank granted her a single-payment loan of \$7,200 for 91 days to pay for new merchandise for her candle shop. Determine the maturity value of the loan if the rate is (a) 6% ordinary interest or (b) 6% exact interest.

A) Step 1: Find ordinary interest

$$01 = P \times R \times \frac{1}{360} \leq 0 \quad 01 = 7200 (.06) \left(\frac{91}{360}\right)$$

Step 2: Find Maturity value

 $MV = P + 1$
 $= 7200 + 109.20$
 $= 730920$

B) Find exact Interest first

 $z_1 = 7200 (.06) \left(\frac{91}{365}\right) = \frac{1}{107.70}$

Then find maturity value

 $1200 + 107.70 = \frac{1}{100} = \frac{1}{100}$

Ex. 2) Parker Logan purchased a new surfboard costing \$600 and financed it at 9% ordinary interest for 90 days. Compute (a) the interest and (b) the maturity value for his loan.

A) D I = P × R ×
$$\frac{T}{360}$$

D I = $600(.09)(\frac{90}{360})$

D I = $\frac{1}{5}13.50$

B.) MV = $600+13.50$

= $\frac{1}{5}613.50$

Ex. 3) Holmes Ostendorf added a tack room to his barn costing \$4,850 financed at 7% exact interest for 120 days. Compute (a) the interest and (b) the maturity value for his loan.

A)
$$E = 4850(.07)(\frac{120}{365}) = \frac{$111.62}{$111.62}$$

Ex. 4) Our class borrowed \$ 5400 to go on a class trip to 725 at 7.3% exact ordinary interest for 95 days. Compute (a) the interest and (b) the maturity value for our loan.

Ex. 5) Which is better for the short-term borrower: ordinary interest or exact interest?

Exact interest blc more days to divide by so lowers interest

Ex.6) Suppose your bank has a minimum loan charge of \$55 when you borrow at 5.5% exact interest for 73 days. What principal borrowed will result in a \$55 interest charge?

$$\Sigma I = P(R)(\frac{1}{365})$$

$$55 = \frac{P}{1}(0.055)(\frac{73}{365})$$

$$(\frac{365}{4.015})55 = \frac{4.045P}{365}(\frac{365}{4.015}) \frac{1465.47}{1465.47} P$$

$$5000 = P$$

Ex. 7) Sally Wong borrowed \$8, 500 and agreed to pay back \$8619 in 90 days. What ordinary interest rat was she paying? (Round answer to the nearest tenth of a percent.)

MV: PIT

$$9619 = 8500$$
 HT
 $-1900 - 8500$
 $119 = T$
 $01 = P \times R \times \frac{T}{360}$
 $119 = 8500(R)(\frac{90}{360})$
 $119 = 2125R$
 $2125 = 2125$
 $056 = R$