

## **AP Physics B Yearly Standards**

| Units             | Priority Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Supporting Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Science Practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit 1:<br>Fluids | <b>1.A</b> The internal structure of a systemdetermines many properties of thesystem. <b>1.E</b> Materials have many macroscopicproperties that result from thearrangement and interactions of theatoms and molecules that make upthe material. <b>3.A</b> All forces share certain commoncharacteristics when considered byobservers in inertial referenceframes. <b>3.B</b> Classically, the acceleration of anobject interacting with other objectscan be predicted by using $\overline{a} = \frac{\Sigma F}{m}$ <b>3.C</b> At the macroscopic level,forces can be categorized as eitherlong-range (action-at-a-distance)forces or contact forces. <b>5.B</b> The energy of a system is | <ul> <li><b>1.A.5.2</b><br/>Construct representations of how the properties of a system are determined by the interactions of its constituent substructures.</li> <li>[SP 1.1, 1.4, 7.1]</li> <li><b>1.E.1.1</b><br/>Predict the densities, differences in densities, or changes in densities under different conditions for natural phenomena and design an investigation to verify the prediction. [SP 4.2, 6.4]</li> <li><b>1.E.1.2</b><br/>Select from experimental data the information necessary to determine the densities of several objects. [SP 4.1, 6.4]</li> <li><b>3.A.2.1</b><br/>Represent forces in diagrams or mathematically using appropriately labeled vectors with magnitude, direction, and units during the analysis of a situation. [SP 1.1]</li> </ul> | <ul> <li>1.1 The student can create representations and models of natural or man-made phenomena and systems in the domain.</li> <li>1.4 The student can use representations and models to analyze situations or solve problems qualitatively and quantitatively.*</li> <li>7.1 The student can connect phenomena and models across spatial and temporal scales.*</li> <li>4.1 The student can justify the selection of the kind of data needed to answer a particular scientific question.</li> <li>4.2 The student can design a plan for collecting data to answer a particular scientific question.</li> <li>6.4 The student can make claims and predictions about natural phenomena based on scientific theories and models.</li> <li>6.1 The student can justify claims with evidence.*</li> <li>6.2 The student can construct explanations of phenomena based on</li> </ul> |

| conserved.<br><b>5.F</b>             | 3.A.3.2<br>Construct an explanation for why an | evidence produced through scientific practices          |
|--------------------------------------|------------------------------------------------|---------------------------------------------------------|
| Classically, the mass of a system is | object cannot exert a force on itself. [SP     | <b>7.2</b> The student can connect concepts             |
| conserved                            | 6.1]                                           | in and across domain(s) to generalize or                |
|                                      | 3.A.3.3                                        | extrapolate in and/or across enduring                   |
|                                      | Describe a force as an interaction             | understandings and/or big ideas.                        |
|                                      | between two objects and identify both          | <b><u>1.5</u></b> The student can re-express key        |
|                                      |                                                |                                                         |
|                                      | objects for any force. [SP 1.4]                | elements of natural phenomena across                    |
|                                      | 3.A.3.4                                        | multiple representations in the domain.                 |
|                                      | Make claims about the force on an              | <u>2.2</u> The student can apply mathematical           |
|                                      | object due to the presence of other            | routines to quantities that describe                    |
|                                      | objects with the same properties: mass,        | natural phenomena                                       |
|                                      | electric charge.                               | <b><u>2.1</u></b> The student can justify the selection |
|                                      | [SP 6.1, 6.4]                                  | of a mathematical routine to solve                      |
|                                      | <u>3.A.4.1</u>                                 | problems.                                               |
|                                      | Construct explanations of physical             |                                                         |
|                                      | situations involving the interaction of        |                                                         |
|                                      | bodies using Newton's third law                |                                                         |
|                                      | and the representation of                      |                                                         |
|                                      | action-reaction pairs of forces. [SP 1.4,      |                                                         |
|                                      | 6.2]                                           |                                                         |
|                                      | <u>3.A.4.2</u>                                 |                                                         |
|                                      | Make claims and predictions about the          |                                                         |
|                                      | action-reaction pairs of forces when two       |                                                         |
|                                      | objects interact using Newton's third          |                                                         |
|                                      | law.                                           |                                                         |
|                                      | [SP 6.4, 7.2]                                  |                                                         |
|                                      | <u>3.A.4.3</u>                                 |                                                         |
|                                      | Analyze situations involving interactions      |                                                         |
|                                      | among several objects by using                 |                                                         |
|                                      | free-body diagrams that include the            |                                                         |
|                                      | application of Newton's third law to           |                                                         |
|                                      | identify forces. [SP 1.4]                      |                                                         |
|                                      | <u>3.B.1.3</u>                                 |                                                         |

| Re-express a free-body diagram             |
|--------------------------------------------|
| representation into a mathematical         |
| representation and solve the               |
| mathematical representation for the        |
| acceleration of the object.                |
| [SP 1.5, 2.2]                              |
| <u>3.B.1.4</u>                             |
| Predict the motion of an object subject    |
| to forces exerted by several objects       |
| using an application of Newton's second    |
| law in a variety of physical situations.   |
| [SP 6.4, 7.2]                              |
| 3.B.2.1                                    |
| Create and use free-body diagrams to       |
| analyze physical situations to solve       |
| problems with motion qualitatively and     |
| guantitatively.                            |
| [SP 1.1, 1.4, 2.2]                         |
| 3.C.4.1                                    |
| Make claims about various contact          |
| forces between objects based on the        |
| microscopic cause of those forces. [SP     |
| 6.1]                                       |
| 3.C.4.2                                    |
| Explain contact forces (tension, friction, |
| normal, buoyant, spring) as arising from   |
| interatomic electric forces and that they  |
| therefore have certain directions. [SP     |
| 6.2]                                       |
| 5.B.10.1                                   |
| Make calculations related to a moving      |
| fluid using Bernoulli's equation. [SP 2.2] |
| 5.B.10.2                                   |
| Make calculations related to a moving      |
|                                            |

| Unit 2:<br>Thermody<br>namics | <b><u>1.A</u></b><br>The internal structure of a system determines many properties of the                                                                                                                                                                                                                                                      | pressure. [SP 2.2]<br><b>5.B.10.3</b><br>Make calculations related to a moving<br>fluid using Bernoulli's equation and the<br>continuity equation. [SP 2.2]<br><b>5.B.10.4</b><br>Construct an explanation of Bernoulli's<br>equation in terms of the conservation of<br>energy. [SP 6.2]<br><b>5.F.1.1</b><br>Make calculations of quantities related<br>to flow of a fluid, using mass<br>conservation principles (the continuity<br>equation). [SP 2.1, 2.2, 7.2]<br><b>1.A.5.2</b><br>Construct representations<br>of how the properties of | <u><b>1.1</b></u> The student can create representations and models of natural or man-made phenomena and systems                                                                                                                                                                                                                                                                                                                               |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | system.<br><u>7.A</u><br>The surgestion of an ideal area area                                                                                                                                                                                                                                                                                  | a system are determined<br>by the interactions of its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | in the domain.*<br><u>1.4</u> The student can use                                                                                                                                                                                                                                                                                                                                                                                              |
|                               | The properties of an ideal gas can<br>be explained in terms of a small<br>number of macroscopic variables,<br>including temperature and<br>pressure.<br><b>3.A</b><br>All forces share certain common<br>characteristics when considered by<br>observers in inertial reference<br>frames.<br><b>3.B</b><br>Classically, the acceleration of an | constituent substructures.<br>[SP 1.1, 1.4, 7.1]<br><u>7.A.1.1</u><br>Make claims about how the<br>pressure of an ideal gas<br>is connected to the force<br>exerted by molecules on the<br>walls of the container and<br>how changes in pressure<br>affect the thermal equilibrium<br>of the system. [SP 6.4, 7.2]<br><u>7.A.1.2</u>                                                                                                                                                                                                            | representations and models to analyze<br>situations or solve problems<br>qualitatively and quantitatively.*<br><b>7.1</b> The student can connect<br>phenomena and models across spatial<br>and temporal scales.*<br><b>2.2</b> The student can apply mathematical<br>routines to quantities that describe<br>natural phenomena.<br><b>3.2</b> The student can refine scientific<br>questions.<br><b>4.2</b> The student can design a plan for |

| object interacting with other objects | Treating a gas molecule          | collecting data to answer a particular                  |
|---------------------------------------|----------------------------------|---------------------------------------------------------|
| can be predicted by using             | as an object (i.e., ignoring its | scientific question.                                    |
| $\overline{a} = \frac{\Sigma F}{m}$   | internal structure), analyze     | <b><u>5.1</u></b> The student can analyze data to       |
| 3. <u>C</u>                           | qualitatively the collisions     | identify patterns or relationships.                     |
| At the macroscopic level, forces      | with a container wall and        | 6.4 The student can make claims and                     |
| can be categorized as either          | determine the cause of           | predictions about natural phenomena                     |
| -                                     | pressure, and at thermal         | based on scientific theories and models                 |
| long-range (action-at-a-distance)     | equilibrium, quantitatively      | 7.2 The student can connect concepts                    |
| forces or contact forces.             | calculate the pressure, force,   | in and across domain(s) to generalize or                |
| <u>4.C</u>                            | or area for a thermodynamic      | extrapolate in and/or across enduring                   |
| Interactions with other objects or    | problem given two of the         | understandings and/or big ideas.                        |
| systems can change the total          | variables. [SP 1.4, 2.2]         | 6.1 The student can justify claims with                 |
| energy of a system                    | 7.A.2.1                          | evidence.*                                              |
| <u>5.B</u>                            | Qualitatively connect the        | 6.2 The student can construct                           |
| The energy of a system is             | average of all kinetic energies  | explanations of phenomena based on                      |
| conserved.                            | of molecules in a system         | evidence produced through scientific                    |
| <u>5.D</u>                            | to the temperature of the        | practices.                                              |
| The linear momentum of a system       | system. [SP 7.1]                 | <b><u>1.5</u></b> The student can re-express key        |
| is conserved.                         | 7.A.2.2                          | elements of natural phenomena across                    |
| <u>1.E</u>                            | Connect the statistical          | multiple representations in the domain.                 |
| Materials have many macroscopic       | distribution of microscopic      | <b>1.2</b> The student can describe                     |
| properties that result from the       | kinetic energies of              | representations and models of natural                   |
| arrangement and interactions of the   | molecules to the                 | or man-made phenomena and                               |
| atoms and molecules that make up      | macroscopic temperature          | systems in the domain                                   |
| the material                          | of the system and relate         | <u><b>2.1</b></u> The student can justify the selection |
| <u>7.B</u>                            | this to thermodynamic            | of a mathematical routine to solve                      |
| The tendency of isolated systems      | processes. [SP 7.1]              | problems.                                               |
| to move toward states with higher     |                                  | <b>4.1</b> The student can justify the selection        |
| disorder is described by probability  | 7.A.3.1                          | of the kind of data needed to answer a                  |
|                                       | Extrapolate from pressure        |                                                         |
|                                       | and temperature or volume        | particular scientific question.*                        |
|                                       | and temperature data             |                                                         |
|                                       | to make the prediction           |                                                         |
|                                       | that there is a temperature      |                                                         |
|                                       | at which the pressure            |                                                         |

| or volume extrapolates          |
|---------------------------------|
| to zero. [SP 6.4, 7.2]          |
| <u>7.A.3.2</u>                  |
| Design a plan for collecting    |
| data to determine the           |
| relationships between           |
| pressure, volume, and           |
| temperature, and/or the         |
| amount of an ideal gas; and     |
| to refine a scientific question |
| proposing an incorrect          |
| relationship between the        |
| variables. [SP 3.2, 4.2]        |
| <u>7.A.3.3</u>                  |
| Analyze graphical               |
| representations of              |
| macroscopic variables for an    |
| ideal gas to determine the      |
| relationships between these     |
| variables and to ultimately     |
| determine the ideal gas         |
| law PV = nRT. [SP 5.1]          |
| <u>3.A.2.1</u>                  |
| Represent forces in diagrams    |
| or mathematically using         |
| appropriately labeled vectors   |
| with magnitude, direction,      |
| and units during the analysis   |
| of a situation. [SP 1.1]        |
| 3.A.3.2                         |
| Construct an explanation for    |
| why an object cannot exert a    |
| force on itself. [SP 6.1]       |
| <u>3.A.3.3</u>                  |
|                                 |

|  | Describe a force as an           |  |
|--|----------------------------------|--|
|  | interaction between two          |  |
|  | objects and identify both        |  |
|  | objects for any force. [SP 1.4]  |  |
|  | 3.A.3.4                          |  |
|  | Make claims about the force      |  |
|  | on an object due to the          |  |
|  | presence of other objects        |  |
|  | with the same properties:        |  |
|  | mass, electric charge.           |  |
|  | [SP 6.1, 6.4]                    |  |
|  | <b>3.A.4.1</b>                   |  |
|  |                                  |  |
|  | Construct explanations of        |  |
|  | physical situations involving    |  |
|  | the interaction of bodies        |  |
|  | using Newton's third law         |  |
|  | and the representation           |  |
|  | of action-reaction pairs of      |  |
|  | forces. [SP 1.4, 6.2]            |  |
|  | <u>3.A.4.2</u>                   |  |
|  | Make claims and predictions      |  |
|  | about the action-reaction pairs  |  |
|  | of forces when two objects       |  |
|  | interact using Newton's third    |  |
|  | law. [SP 6.4, 7.2]               |  |
|  | <u>3.A.4.3</u>                   |  |
|  | Analyze situations involving     |  |
|  | interactions among several       |  |
|  | objects by using free-body       |  |
|  | diagrams that include the        |  |
|  | application of Newton's third    |  |
|  | law to identify forces. [SP 1.4] |  |
|  | <u>3.B.1.3</u>                   |  |
|  | Re-express a free-body           |  |
|  |                                  |  |

| diagram representation into a |
|-------------------------------|
| mathematical representation   |
| and solve the mathematical    |
| representation for the        |
| acceleration of the object.   |
| [SP 1.5, 2.2]                 |
| <u>3.B.1.4</u>                |
| Predict the motion of an      |
| object subject to forces      |
| exerted by several objects    |
| using an application          |
| of Newton's second law        |
| in a variety of physical      |
| situations. [SP 6.4, 7.2]     |
| <u>3.B.2.1</u>                |
| Create and use free-body      |
| diagrams to analyze physical  |
| situations to solve problems  |
| with motion qualitatively     |
| and quantitatively. [SP 1.1,  |
| 1.4, 2.2]                     |
| <u>3.C.4.1</u>                |
| Make claims about various     |
| contact forces between        |
| objects based on the          |
| microscopic cause of those    |
| forces. [SP 6.1]              |
| <u>3.C.4.2</u>                |
| Explain contact forces        |
| (tension, friction, normal,   |
| buoyant, spring) as arising   |
| from interatomic electric     |
| forces and that they          |
| therefore have certain        |
|                               |

| directions. [SP 6.2]          |
|-------------------------------|
| <u>4.C.3.1</u>                |
| Make predictions about        |
| the direction of energy       |
| transfer due to temperature   |
| differences based on          |
| interactions at the           |
| microscopic level. [SP 6.4]   |
| <u>5.B.2.1</u>                |
| Calculate the expected        |
| behavior of a system using    |
| the object model (i.e., by    |
| ignoring changes in internal  |
| structure) to analyze a       |
| situation. Then, when the     |
| model fails, justify the use  |
| of conservation of energy     |
| principles to calculate       |
| the change in internal        |
| energy due to changes in      |
| internal structure because    |
| the object is actually a      |
| system. [SP 1.4, 2.1]         |
| <u>5.B.4.1</u>                |
| Describe and make             |
| predictions about             |
| the internal energy of        |
| systems. [SP 6.4, 7.2]        |
| 5.B.4.2                       |
| Calculate changes in kinetic  |
| energy and potential energy   |
| of a system using information |
| from representations of that  |
| system. [SP 1.4, 2.1, 2.2]    |
|                               |

| [SP 1.4, 2.1, 2.2]            |
|-------------------------------|
| <u>5.B.5.4</u>                |
| Make claims about the         |
| interaction between a system  |
| and its environment in which  |
| the environment exerts a      |
| force on the system, thus     |
| doing work on the system      |
| and changing the energy of    |
| the system (kinetic energy    |
| plus potential energy).       |
| [SP 6.4, 7.2]                 |
| <u>5.B.5.5</u>                |
| Predict and calculate the     |
| energy transfer to (i.e., the |
| work done on) an object or    |
| system from information       |
| about a force exerted on the  |
| object or system through a    |
| distance. [SP 2.2, 6.4]       |
| <u>5.B.5.6</u>                |
| Design an experiment and      |
| analyze graphical data        |
| in which interpretations      |
| of the area under a           |
| pressure-volume curve are     |
| needed to determine the       |
| work done on or by the object |
| or system. [SP 4.2, 5.1]      |
| <u>5.B.6.1</u>                |
| Describe the models           |
| that represent processes      |
| by which energy can be        |
| transferred between a system  |
|                               |

| and its environment because<br>of differences in temperature:<br>conduction, convection, and<br>radiation. [SP 1.2]<br><b>5.B.7.1</b><br>Predict qualitative changes<br>in the internal energy of a<br>thermodynamic system<br>involving transfer of energy<br>due to heat or work done,<br>and justify those predictions<br>in terms of conservation<br>of energy principles.<br>[SP 6.4, 7.2]<br><b>5.B.7.2</b><br>Create a plot of pressure<br>versus volume for a<br>thermodynamic process from<br>given data. [SP 1.1]<br><b>5.B.7.3</b><br>Make calculations of internal<br>energy changes, heat, or<br>work, based on conservation<br>of energy principles (i.e., the<br>first law of thermodynamics),<br>using a plot of pressure<br>versus volume for a<br>thermodynamic process. |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| versus volume for a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| [SP 1.1, 1.4, 2.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| <u>5.D.1.6</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Make predictions of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| dynamical properties of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| a system undergoing a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| collision by application of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |

| principle of linear momentum     |
|----------------------------------|
| conservation and the             |
| principle of the conservation    |
| of energy in situations in       |
| which an elastic collision may   |
| also be assumed. [SP 6.4]        |
| <u>5.D.1.7</u>                   |
| Classify a given collision       |
| situation as elastic or          |
| inelastic, justify the selection |
| of conservation of linear        |
| momentum and restoration         |
| of kinetic energy as the         |
| appropriate principles for       |
| analyzing an elastic collision,  |
| solve for missing variables,     |
| and calculate their values.      |
| [SP 2.1, 2.2]                    |
| 5.D.2.5                          |
| Classify a given collision       |
| situation as elastic or          |
| inelastic, justify the           |
| selection of conservation        |
| of linear momentum as the        |
| appropriate solution method      |
| for an inelastic collision,      |
| recognize that there is a        |
| common final velocity for        |
| the colliding objects in         |
| the totally inelastic case,      |
| solve for missing variables,     |
| and calculate their values.      |
| [SP 2.1, 2.2]                    |
| <u>5.D.2.6</u>                   |
|                                  |

| Unit 3:<br>Electric<br>Force,<br>Field, and | <b>1.A</b><br>The internal structure of a system determines many properties of the | it or from it in a thermal<br>process. [SP 6.2]<br><b>7.B.2.1</b><br>Connect qualitatively<br>the second law of<br>thermodynamics in terms<br>of the state function<br>called entropy and how<br>it (entropy) behaves in<br>reversible and irreversible<br>processes. [SP 7.1]<br><b>1.A.5.2</b><br>Construct representations<br>of how the properties of | 1.1 The student can create representations and models of natural or man-made phenomena and systems |
|---------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                             |                                                                                    | process. [SP 6.2]                                                                                                                                                                                                                                                                                                                                         |                                                                                                    |

| Potential | system.                                        | a system are determined                               | in the domain.*                                                                                |
|-----------|------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Polential | 5                                              | a system are determined<br>by the interactions of its |                                                                                                |
|           | <u>1.B</u>                                     | constituent substructures.                            | <u><b>1.4</b></u> The student can use                                                          |
|           | Electric charge is a property of an            |                                                       | representations and models to analyze                                                          |
|           | object or system that affects its              | [SP 1.1, 1.4, 7.1]                                    | situations or solve problems                                                                   |
|           | interactions with                              | 1.B.1.1                                               | qualitatively and quantitatively.*                                                             |
|           | other objects or systems containing            | Make claims about natural                             | 7.1 The student can connect                                                                    |
|           | charge.                                        | phenomena based on                                    | phenomena and models across spatial                                                            |
|           | <u>5.C</u>                                     | conservation of electric                              | and temporal scales.*                                                                          |
|           | The electric charge of a system is             | charge. [SP 6.4]                                      | 6.2 The student can construct                                                                  |
|           | conserved.                                     | <u>1.B.1.2</u>                                        | explanations of phenomena based on                                                             |
|           | <u>4.E</u>                                     | Make predictions, using the                           | evidence produced through scientific                                                           |
|           | The electric and magnetic                      | conservation of electric                              | practices.                                                                                     |
|           | properties of a system can change              | charge, about the sign and                            | 6.4 The student can make claims and                                                            |
|           | in response to the                             | relative quantity of net charge                       | predictions about natural phenomena                                                            |
|           | presence of, or changes in, other              | of objects or systems after                           | based on scientific theories and models.                                                       |
|           | objects or systems.                            | various charging processes,                           | <u>7.2</u> The student can connect concepts                                                    |
|           | <u>1.E</u>                                     | including conservation of                             | in and across domain(s) to generalize or                                                       |
|           | Materials have many macroscopic                | charge in simple circuits.                            | extrapolate in and/or across enduring                                                          |
|           | properties that result from the                | [SP 6.4, 7.2]                                         | understandings and/or big ideas.                                                               |
|           | arrangement and                                | <u>1.B.2.1</u>                                        | <b><u>4.1</u></b> The student can justify the selection                                        |
|           | interactions of the atoms and                  | Construct an explanation                              | of the kind of data needed to answer a                                                         |
|           | molecules that make up the                     | of the two charge model of                            | particular scientific question.                                                                |
|           | material                                       | electric charge based on                              | <b><u>4.2</u></b> The student can design a plan for                                            |
|           | <u>3.A</u>                                     | evidence produced through                             | collecting data to answer a particular                                                         |
|           | All forces share certain common                | scientific practices. [SP 6.2]                        | scientific question.*                                                                          |
|           | characteristics when considered by             | <u>1.B.2.2</u>                                        | 5.1 The student can analyze data to                                                            |
|           | observers in                                   | Make a qualitative prediction                         | identify patterns or relationships                                                             |
|           | inertial reference frames.                     | about the distribution of                             | 3.2 The student can refine scientific                                                          |
|           | <u>3.B</u>                                     | positive and negative electric                        | questions.                                                                                     |
|           | Classically, the acceleration of an            | charges within neutral systems                        | 5.3 The student can evaluate the                                                               |
|           | object interacting with other objects          | as they undergo various                               | evidence provided by data sets in                                                              |
|           | can be predicted by using                      | processes. [SP 6.4, 7.2]                              | relation to a particular scientific question<br><u>6.1</u> The student can justify claims with |
|           | $\overline{a} = \frac{\Sigma F}{\overline{a}}$ | <u>1.B.2.3</u>                                        | evidence.*                                                                                     |
|           | <sup>m</sup> m                                 | Challenge claims that                                 |                                                                                                |
|           |                                                | l                                                     |                                                                                                |

| <ul> <li><b>3.C</b> <ul> <li>At the macroscopic level, forces can be categorized as either long-range (action-at-a-distance) forces or contact forces</li> <li><b>3.G</b> <ul> <li>Certain types of forces are considered fundamental.</li> </ul> </li> <li><b>2.A</b> <ul> <li>A field associates a value of some physical quantity with every point in space. Field models are useful for describing interactions that occur at a distance (long-range forces) as well as a variety of other physical phenomena</li> <li><b>2.C</b> <ul> <li>An electric field is caused by an object with electric charge.</li> </ul> </li> <li><b>2.E</b> <ul> <li>Physicists often construct a map of isolines connecting points of equal value for some quantity related to a field and use these maps to help visualize the field.</li> <li><b>5.B</b></li> <li>The energy of a system is conserved.</li> </ul> </li> </ul></li></ul></li></ul> | polarization of electric charge<br>or separation of charge must<br>result in a net charge on the<br>object. [SP 6.1]<br><b>1.B.3.1</b><br>Construct an explanation<br>that challenges the claim<br>that an electric charge<br>smaller than the elementary<br>charge has been isolated.<br>[SP 1.5, 6.1, 7.2]<br><b>5.C.2.1</b><br>Predict electric charges on<br>objects within a system by<br>application of the principle of<br>charge conservation within a<br>system. [SP 6.4]<br><b>5.C.2.2</b><br>Design a plan to collect data<br>on the electrical charging of<br>objects and electric charge<br>induction on neutral objects<br>and qualitatively analyze that<br>data. [SP 4.2, 5.1]<br><b>5.C.2.3</b><br>Justify the selection of data<br>relevant to an investigation<br>of the electrical charging of<br>objects and electric charge<br>induction on neutral objects.<br>[SP 4.1]<br><b>4.E.3.1</b><br>Make predictions about | <ul> <li><b>1.5</b> The student can re-express key elements of natural phenomena across multiple representations in the domain.*</li> <li><b>2.2</b> The student can apply mathematical routines to quantities that describe natural phenomena</li> <li><b>2.1</b> The student can justify the selection of a mathematical routine to solve problems</li> </ul> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the redistribution of charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                 |

| during charging by friction,<br>conduction, and induction.<br>[SP 6.4]<br><u><b>4.E.3.2</b></u><br>Make predictions about |  |
|---------------------------------------------------------------------------------------------------------------------------|--|
| the redistribution of charge                                                                                              |  |
| caused by the electric                                                                                                    |  |
| field due to other systems,                                                                                               |  |
| resulting in charged or                                                                                                   |  |
| polarized objects. [SP 6.4, 7.2]                                                                                          |  |
| <u>4.E.3.3</u>                                                                                                            |  |
| Construct a representation of the distribution of fixed and                                                               |  |
|                                                                                                                           |  |
| mobile charge in insulators and conductors. [SP 1.1, 1.4, 6.4]                                                            |  |
| <u>4.E.3.4</u>                                                                                                            |  |
| Construct a representation of                                                                                             |  |
| the distribution of fixed and                                                                                             |  |
| mobile charge in insulators                                                                                               |  |
| and conductors that                                                                                                       |  |
| predicts charge distribution                                                                                              |  |
| in processes involving                                                                                                    |  |
| induction or conduction.                                                                                                  |  |
| [SP 1.1, 1.4, 6.4]                                                                                                        |  |
| <u>4.E.3.5</u>                                                                                                            |  |
| Plan and/or analyze the                                                                                                   |  |
| results of experiments                                                                                                    |  |
| in which electric-charge                                                                                                  |  |
| rearrangement occurs by                                                                                                   |  |
| electrostatic induction,                                                                                                  |  |
| or be able to refine a                                                                                                    |  |
| scientific question relating                                                                                              |  |
| to such an experiment by                                                                                                  |  |
| identifying anomalies in                                                                                                  |  |

|  | a data set or procedure.        |  |
|--|---------------------------------|--|
|  | [SP 3.2, 4.1, 4.2, 5.1, 5.3]    |  |
|  | 3.A.2.1                         |  |
|  |                                 |  |
|  | Represent forces in diagrams    |  |
|  | or mathematically using         |  |
|  | appropriately labeled vectors   |  |
|  | with magnitude, direction,      |  |
|  | and units during the analysis   |  |
|  | of a situation. [SP 1.1]        |  |
|  | 3.A.3.2                         |  |
|  | Construct an explanation for    |  |
|  | why an object cannot exert a    |  |
|  | force on itself. [SP 6.1]       |  |
|  | <b>3.A.3.3</b>                  |  |
|  |                                 |  |
|  | Describe a force as an          |  |
|  | interaction between             |  |
|  | two objects and identify both   |  |
|  | objects for any force. [SP 1.4] |  |
|  | <u>3.A.3.4</u>                  |  |
|  | Make claims about the force     |  |
|  | on an object due to the         |  |
|  | presence of other objects       |  |
|  | with the same properties:       |  |
|  | mass, electric charge.          |  |
|  | [SP 6.1, 6.4]                   |  |
|  | 3.A.4.1                         |  |
|  |                                 |  |
|  | Construct explanations of       |  |
|  | physical situations involving   |  |
|  | the interaction of bodies       |  |
|  | using Newton's third law        |  |
|  | and the representation of       |  |
|  | action-reaction pairs of        |  |
|  | forces. [SP 1.4, 6.2]           |  |
|  | 3.A.4.2                         |  |
|  |                                 |  |

| Make claims and predictions      |  |
|----------------------------------|--|
| about the action-reaction        |  |
| pairs of forces when             |  |
| two objects interact             |  |
| using Newton's third law.        |  |
| [SP 6.4, 7.2]                    |  |
| <u>3.A.4.3</u>                   |  |
| Analyze situations involving     |  |
| interactions among several       |  |
| objects by using free-body       |  |
| diagrams that include the        |  |
| application of Newton's third    |  |
| law to identify forces. [SP 1.4] |  |
| 3.B.1.3                          |  |
| Re-express a free-body           |  |
| diagram representation into a    |  |
| mathematical representation      |  |
| and solve the mathematical       |  |
| representation for the           |  |
| acceleration of the object.      |  |
| [SP 1.5, 2.2]                    |  |
| 3.B.1.4                          |  |
| Predict the motion of an         |  |
| object subject to forces         |  |
| exerted by several objects       |  |
| using an application of          |  |
| Newton's second law in a         |  |
| variety of physical situations.  |  |
| [SP 6.4, 7.2]                    |  |
| <u>3.B.2.1</u>                   |  |
| Create and use free-body         |  |
| diagrams to analyze physical     |  |
| situations to solve problems     |  |
| with motion qualitatively        |  |
|                                  |  |

|  | and quantitatively.             |  |
|--|---------------------------------|--|
|  | [SP 1.1, 1.4, 2.2]              |  |
|  | <u>3.C.2.1</u>                  |  |
|  | Make predictions about the      |  |
|  | interaction between two         |  |
|  | electric point charges, using   |  |
|  | Coulomb's law qualitatively     |  |
|  | and quantitatively.             |  |
|  | [SP 2.2, 6.4]                   |  |
|  | <u>3.C.2.2</u>                  |  |
|  | Connect the concepts            |  |
|  | of gravitational force and      |  |
|  | electric force to compare       |  |
|  | similarities and differences    |  |
|  | between the forces. [SP 7.2]    |  |
|  | 3.C.2.3                         |  |
|  | Describe the electric           |  |
|  | force that results from         |  |
|  | the interaction of several      |  |
|  | separated point charges         |  |
|  | (generally two to four point    |  |
|  | charges, though more are        |  |
|  | permitted in situations of high |  |
|  | symmetry) using appropriate     |  |
|  | mathematics. [SP 2.2]           |  |
|  | 3.G.1.2                         |  |
|  | Connect the strength of the     |  |
|  | gravitational force between     |  |
|  | two objects to the spatial      |  |
|  | scale of the situation and      |  |
|  | the masses of the objects       |  |
|  | involved and compare that       |  |
|  | strength with other types of    |  |
|  | forces. [SP 7.1]                |  |
|  |                                 |  |

| <u>3.G.2.1</u>                   |
|----------------------------------|
| Connect the strength of          |
| electromagnetic forces           |
| with the spatial scale of the    |
| situation, the magnitude of      |
| the electric charges, and the    |
| motion of the electrically       |
| charged objects involved.        |
| [SP 7.1]                         |
| <u>2.C.1.1</u>                   |
| Predict the direction and        |
| the magnitude of the force       |
| exerted on an object with an     |
| electric charge q placed in      |
| an electric field E using the    |
| mathematical model of the        |
| relation between an electric     |
| force and an electric field:     |
| F=qE                             |
| a vector relation. [SP 6.4, 7.2] |
| <u>2.C.1.2</u>                   |
| Calculate any one of the         |
| variables—electric force,        |
| electric charge, and electric    |
| field—at a point given the       |
| values and sign or direction     |
| of the other two quantities.     |
| [SP 2.2]                         |
| <u>2.C.2.1</u>                   |
| Qualitatively and                |
| semi quantitatively apply the    |
| vector relationship between      |
| the electric field and the net   |
| electric charge creating that    |
|                                  |

| field. [SP 2.2, 6.4]             |
|----------------------------------|
| <u>2.C.3.1</u>                   |
| Explain the inverse square       |
| dependence of the                |
| electric field surrounding       |
| a spherically symmetric,         |
| electrically charged object.     |
| [SP 6.2]                         |
| 2.C.4.1                          |
| Distinguish the                  |
| characteristics that differ      |
| between monopole                 |
| fields (gravitational field      |
| of spherical mass and            |
| electrical field due to          |
| single-point charge) and         |
| dipole fields (electric dipole   |
| field and magnetic field)        |
| and make claims about            |
| the spatial behavior of the      |
| fields using qualitative or      |
| semiquantitative arguments       |
| based on vector addition         |
| of fields due to each            |
| point source, including          |
| identifying the locations        |
| and signs of sources from a      |
| vector diagram of the field.     |
| [SP 2.2, 6.4, 7.2]               |
| <u>2.C.4.2</u>                   |
| Apply mathematical routines      |
| to determine the magnitude       |
| and direction of the electric    |
| field at specified points in the |
|                                  |

| vicinity of a small set (two to |
|---------------------------------|
| four) of point charges and      |
| express the results in terms    |
| of magnitude and direction      |
| of the field in a visual        |
| representation by drawing       |
| field vectors of appropriate    |
| length and direction at the     |
| specified points. [SP 1.4, 2.2] |
| <u>2.C.5.1</u>                  |
| Create representations of       |
| the magnitude and direction     |
| of the electric field at        |
| various distances (small        |
| compared with plate size)       |
| from two electrically charged   |
| plates of equal magnitude       |
| and opposite signs, and be      |
| able to recognize that the      |
| assumption of uniform field     |
| is not appropriate near edges   |
| of plates. [SP 1.1, 2.2]        |
| <u>2.C.5.2</u>                  |
| Calculate the magnitude and     |
| determine the direction of      |
| the electric field between      |
| two electrically charged        |
| parallel plates, given the      |
| charge of each plate, or the    |
| electric potential difference   |
| and plate separation. [SP 2.2]  |
| <u>2.C.5.3</u>                  |
| Represent the motion of         |
| an electrically charged         |
|                                 |

| particle in the uniform field   |
|---------------------------------|
| between two oppositely          |
| charged plates, and express     |
| the connection of this          |
| motion to projectile motion     |
| of an object with mass in       |
| Earth's gravitational field.    |
| [SP 1.1, 2.2, 7.1]              |
| 2.E.1.1                         |
| Construct or interpret visual   |
| representations of the          |
| isolines of equal gravitational |
| potential energy per unit       |
| mass and refer to each line as  |
| a gravitational equipotential.  |
| [SP 1.4, 6.4, 7.2]              |
| 2.E.2.1                         |
| Determine the structure of      |
| isolines of electric potential  |
| by constructing them            |
| in a given electric field.      |
| [SP 6.4, 7.2]                   |
| 2.E.2.2                         |
| Predict the structure of        |
| isolines of electric potential  |
| by constructing them in         |
| a given electric field, and     |
| make connections between        |
| these isolines and those        |
| found in a gravitational field. |
| [SP 6.4, 7.2]                   |
| <u>2.E.2.3</u>                  |
| Construct isolines of electric  |
| potential in an electric field, |
|                                 |

|  | and determine the effect<br>of that field on electrically<br>charged objects, qualitatively<br>using the concept of isolines.<br>[SP 1.4]<br><b>2.E.3.1</b><br>Apply mathematical routines<br>to calculate the average<br>value of the magnitude of the<br>electric field in a region from<br>a description of the electric<br>potential in that region using<br>the displacement along the<br>line on which the difference<br>in potential is evaluated.<br>[SP 2.2]<br><b>2.E.3.2</b><br>Apply the concept of the<br>isoline representation of<br>electric potential for a given<br>electric charge distribution to<br>predict the average value of<br>the electric field in the region.<br>[SP 1.4, 6.4]<br><b>5.B.2.1</b><br>Calculate the expected<br>behavior of a system using<br>the object model (i.e., by<br>ignoring changes in internal<br>structure) to analyze a<br>situation. Then, when the<br>model fails, justify the use |  |
|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

| change in internal energy     |
|-------------------------------|
| due to changes in internal    |
| structure because the         |
| object is actually a system.  |
| [SP 1.4, 2.1]                 |
| <u>5.B.4.1</u>                |
| Describe and make             |
| predictions about the         |
| internal energy of systems.   |
| [SP 6.4, 7.2]                 |
| <u>5.B.4.2</u>                |
| Calculate changes in kinetic  |
| energy and potential energy   |
| of a system using information |
| from representations of that  |
| system. [SP 1.4, 2.1, 2.2]    |
| <u>5.B.5.4</u>                |
| Make claims about the         |
| interaction between a system  |
| and its environment in which  |
| the environment exerts a      |
| force on the system, thus     |
| doing work on the system      |
| and changing the energy of    |
| the system (kinetic energy    |
| plus potential energy).       |
| [SP 6.4, 7.2]                 |
| <u>5.B.5.5</u>                |
| Predict and calculate the     |
| energy transfer to (i.e., the |
| work done on) an object or    |
| system from information       |
| about a force exerted on the  |
| object or system through a    |
|                               |

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | distance. [SP 2.2, 6.4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit 4:<br>Circuits | <b>1.B</b> Electric charge is a property of an object or system that affects its interactions with other objects or systems containing charge. <b>1.E</b> Materials have many macroscopic properties that result from the arrangement and interactions of the atoms and molecules that make up the material. <b>4.E</b> The electric and magnetic properties of a system can change in response to the presence of, or changes in, other objects or systems. <b>5.B</b> The electric charge of a system is conserved. <b>5.C</b> The electric charge of a system is conserved. | <ul> <li><b>1.B.1.1</b><br/>Make claims about natural phenomena based on conservation of electric charge. [SP 6.4]</li> <li><b>1.B.1.2</b><br/>Make predictions, using the conservation of electric charge, about the sign and relative quantity of net charge of objects or systems after various charging processes, including conservation of charge in simple circuits.</li> <li>[SP 6.4, 7.2]</li> <li><b>1.B.2.1</b><br/>Construct an explanation of the two charge model of electric charge based on evidence produced through scientific practices. [SP 6.2]</li> <li><b>1.B.2.2</b><br/>Make a qualitative prediction about the distribution of positive and negative electric charges within neutral systems as they undergo various processes.</li> <li>[SP 6.4, 7.2]</li> <li><b>1.B.2.3</b><br/>Challenge claims that polarization of electric charge must result in a net charge on the object. [SP 6.1]</li> <li><b>1.E.2.1</b><br/>Select and justify the data needed to</li> </ul> | <ul> <li>6.1 The student can justify claims with evidence.*</li> <li>6.2 The student can construct explanations of phenomena based on evidence produced through scientific practices.*</li> <li>6.4 The student can make claims and predictions about natural phenomena based on scientific theories and models.*</li> <li>7.2 The student can connect concepts in and across domain(s) to generalize or extrapolate in and/or across enduring understandings and/or big ideas.*</li> <li>4.1 The student can apply mathematical routines to quantities that describe natural phenomena.</li> <li>4.1 The student can justify the selection of the kind of data needed to answer a particular scientific question.</li> <li>2.2 The student can justify the selection of the kind of data needed to answer a particular scientific question.</li> <li>4.1 The student can justify the selection of the kind of data needed to answer a particular scientific question.</li> <li>5.1 The student can design a plan for collecting data to answer a particular scientific question.</li> <li>5.1 The student can re-express key elements of natural phenomena across multiple representations</li> </ul> |

| determine resistivity for a given<br>material. [SP 4.1]<br><b>4.E.4.1</b><br>Make predictions about the properties of<br>resistors and/or capacitors when placed<br>in a simple circuit based on the<br>geometry of the circuit element and<br>supported by scientific theories and<br>mathematical relationships. [SP 2.2, 6.4]<br><b>4.E.4.2</b><br>Design a plan for the collection of data<br>to determine the effect of changing the<br>geometry and/or materials on the<br>resistance or capacitance of a circuit<br>element, and relate results to the basic<br>properties of resistors and capacitors.<br>[SP 4.1, 4.2]<br><b>4.E.4.3</b><br>Analyze data to determine the effect of<br>changing the geometry and/or materials<br>on the resistance or capacitance<br>of a circuit element, and relate results to<br>the basic properties of resistors and<br>capacitors. [SP 5.1]<br><b>4.E.5.1</b><br>Make and justify a quantitative<br>prediction of the effect of a change in | in the domain.<br>2.1 The student can justify the selection<br>of a mathematical routine to solve<br>problems<br>5.3 The student can evaluate the<br>evidence provided by data sets in<br>relation to a particular scientific question<br>1.4 The student can use<br>representations and models to analyze<br>situations or solve problems<br>qualitatively and quantitatively |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| on the resistance or capacitance<br>of a circuit element, and relate results to<br>the basic properties of resistors and<br>capacitors. [SP 5.1]<br><b>4.E.5.1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                |

| <u>4.E.5.2</u>                             |     |
|--------------------------------------------|-----|
| Make and justify a qualitative prediction  | n   |
| of the effect of a change in values or     |     |
| arrangements of one or two circuit         |     |
| elements on currents and potential         |     |
| differences in a circuit containing a sm   | all |
| number of sources of emf, resistors,       |     |
| capacitors, and switches                   |     |
| in series and/or parallel.                 |     |
| [SP 6.1, 6.4]                              |     |
| 4.E.5.3                                    |     |
| Plan data collection strategies and        |     |
| perform data analysis to examine           |     |
| the values of currents and potential       |     |
| differences in an electric circuit that is |     |
| modified by changing or rearranging        |     |
| circuit elements, including sources of     |     |
| emf, resistors, and capacitors.            |     |
| [SP 2.2, 4.2, 5.1]                         |     |
| 5.B.9.4                                    |     |
| Analyze experimental data including a      | n   |
| analysis of experimental uncertainty th    |     |
| will demonstrate the validity of           |     |
| Kirchhoff's loop rule: ΔV=0. [SP 5.1]      |     |
| 5.B.9.5                                    |     |
| Describe and make predictions              |     |
| regarding electrical potential difference  |     |
| charge, and current in steady- state       |     |
| circuits composed of various               |     |
| combinations of resistors and capacito     | rs  |
| using conservation of energy principle     |     |
| (Kirchhoff's loop rule). [SP 6.4]          | -   |
| 5.B.9.6                                    |     |
| Mathematically express the changes i       |     |
|                                            |     |

|  | electric potential energy of a loop in a<br>multi loop electrical circuit, and justify<br>this expression using the principle of the<br>conservation of energy. [SP 2.1, 2.2]<br><b>5.B.9.7</b><br>Refine and analyze a scientific question<br>for an experiment using Kirchhoff's loop<br>rule for circuits that includes<br>determination of internal resistance of<br>the battery and analysis of a non-ohmic<br>resistor. [SP 4.1, 4.2, 5.1, 5.3]<br><b>5.B.9.8</b><br>Translate between graphical and<br>symbolic representations of<br>experimental data describing<br>relationships among power, current, and<br>potential difference across a resistor.<br>[SP 1.5]<br><b>5.C.3.4</b><br>Predict or describe current values in<br>series and parallel arrangements of<br>resistors and other branching circuits<br>using Kirchhoff's junction rule, and<br>explain the relationship of the rule to the<br>law of charge conservation. [SP 6.4,<br>7.2]<br><b>5.C.3.5</b><br>Determine missing values and direction<br>of electric current in branches of a<br>circuit with resistors and NO capacitors<br>from values and directions of current in<br>other branches of the circuit through<br>appropriate selection of nodes and |  |
|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|  | appropriate selection of nodes and application of the junction rule. [SP 1.4,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

|                          |                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>2.2]</li> <li>5.C.3.6</li> <li>Determine missing values and direction of electric current in branches of a circuit with both resistors and capacitors from values and directions of current in other branches of the circuit through appropriate selection of nodes and application of the junction rule. [SP 1.4, 2.2]</li> <li>5.C.3.7</li> <li>Determine missing values, direction of electric current, charge of capacitors at steady state, and potential differences within a circuit with resistors and capacitors from values and directions of current in other branches of the circuit. [SP 1.4, 2.2]</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit 5:<br>Magnetis<br>m | <ul> <li><u>1.A</u><br/>The internal structure of a system<br/>determines many properties of the<br/>system.</li> <li><u>1.E</u><br/>Materials have many macroscopic<br/>properties that result from the<br/>arrangement and<br/>interactions of the atoms and<br/>molecules that make up the<br/>material.</li> <li><u>2.A</u><br/>A field associates a value of some<br/>physical quantity with every point in</li> </ul> | <ul> <li><u>1.A.5.2</u><br/>Construct representations<br/>of how the properties of a<br/>system are determined by the<br/>interactions of its constituent<br/>substructures.</li> <li>[SP 1.1, 1.4, 7.1]</li> <li><u>2.C.4.1</u></li> <li>Distinguish the<br/>characteristics that differ<br/>between monopole<br/>fields (gravitational field<br/>of spherical mass and<br/>electrical field due to</li> </ul>                                                                                                                                                                                                                     | <ul> <li><u>1.1</u> The student can create<br/>representations and models of natural<br/>or man-made phenomena and systems<br/>in the domain.</li> <li><u>1.4</u> The student can use<br/>representations and models to analyze<br/>situations or solve problems<br/>qualitatively and quantitatively.*</li> <li><u>7.1</u> The student can connect<br/>phenomena and models across spatial<br/>and temporal scales.*</li> <li><u>2.2</u> The student can apply mathematical<br/>routines to quantities that describe<br/>natural phenomena.</li> </ul> |

| <ul> <li>space. Field models are useful for describing interactions that occur at a distance (long-range forces) as well as a variety of other physical phenomena. </li> <li><b>2.C</b> <ul> <li>An electric field is caused by an object with electric charge</li> <li><b>2.D</b></li> <li>A magnetic field is caused by a magnet or moving electrically charged object. Magnetic fields observed in nature always seem to be produced either by moving charged objects or by magnetic dipoles or combinations of dipoles and never by single poles. </li> <li><b>3.C</b> <ul> <li>At the macroscopic level, forces can be categorized as either long-range (action-at-a-distance) forces or contact forces. </li> <li><b>3.A</b> </li> <li>All forces share certain common characteristics when considered by observers in inertial reference frames. </li> <li><b>3.B</b> </li> <li>Classically, the acceleration of an object interacting with other objects can be predicted by using</li> </ul> </li> </ul></li></ul> | single-point charge) and<br>dipole fields (electric dipole<br>field and magnetic field)<br>and make claims about<br>the spatial behavior of the<br>fields using qualitative or<br>semiquantitative arguments<br>based on vector addition<br>of fields due to each point<br>source, including identifying<br>the locations and signs<br>of sources from a vector<br>diagram of the field.<br>[SP 2.2, 6.4, 7.2]<br><b>2.D.1.1</b><br>Apply mathematical routines<br>to express the force exerted<br>on a moving charged object<br>by a magnetic field. [SP 2.2]<br><b>2.D.2.1</b><br>Create a verbal or visual<br>representation of a magnetic<br>field around a straight wire<br>or a pair of parallel wires.<br>[SP 1.1]<br><b>2.D.3.1</b><br>Describe the orientation of<br>a magnetic field in general<br>and the particular cases of<br>a compass in the magnetic<br>field of Earth and iron filings<br>surrounding a bar magnet.<br>[SP 1.2] | <ul> <li>6.4 The student can make claims and predictions about natural phenomena based on scientific theories and models</li> <li>7.2 The student can connect concepts in and across domain(s) to generalize or extrapolate in and/or across enduring understandings and/or big ideas.</li> <li>1.2 The student can describe representations and models of natural or man-made phenomena and systems in the domain</li> <li>4.2 The student can design a plan for collecting data to answer a particular scientific question.</li> <li>5.1 The student can analyze data to identify patterns or relationships.</li> <li>6.1 The student can construct explanations of phenomena based on evidence produced through scientific practices</li> </ul> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| $\overline{a} = \frac{\Sigma F}{m}$ <b>3.G</b> Certain types of forces are considered fundamental. <b>4.E</b> The electric and magnetic properties of a system can change in response to the presence of, or changes in, other objects or systems. | <ul> <li>2.D.4.1 Qualitatively analyze the magnetic behavior of a bar magnet composed of ferromagnetic material. [SP 1.4] <b>3.C.3.1</b> Use right-hand rules to analyze a situation involving a current-carrying conductor and a moving electrically charged object to determine the direction of the magnetic force exerted on the charged object due to the magnetic field created by the current-carrying conductor. [SP 1.4] <b>3.C.3.2</b> Plan a data collection strategy appropriate to an investigation of the direction of the direction of the direction of the specific set of equipment and instruments, and analyze the resulting data to arrive at a conclusion. [SP 4.2, 5.1] <b>3.A.2.1</b> Represent forces in diagrams or mathematically using appropriately labeled vectors with magnitude, direction,</li></ul> |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|

|  | and units during the analysis   |  |
|--|---------------------------------|--|
|  | of a situation. [SP 1.1]        |  |
|  | <u>3.A.3.2</u>                  |  |
|  | Construct an explanation for    |  |
|  | why an object cannot exert a    |  |
|  | force on itself. [SP 6.1]       |  |
|  | <u>3.A.3.3</u>                  |  |
|  | Describe a force as an          |  |
|  | interaction between two         |  |
|  | objects and identify both       |  |
|  | objects for any force. [SP 1.4] |  |
|  | <u>3.A.3.4</u>                  |  |
|  | Make claims about the force     |  |
|  |                                 |  |
|  | on an object due to the         |  |
|  | presence of other objects with  |  |
|  | the same properties: mass,      |  |
|  | electric charge. [SP 6.1, 6.4]  |  |
|  | <u>3.A.4.1</u>                  |  |
|  | Construct explanations of       |  |
|  | physical situations involving   |  |
|  | the interaction of bodies       |  |
|  | using Newton's third law and    |  |
|  | the representation of action-   |  |
|  | reaction pairs of forces.       |  |
|  | [SP 1.4, 6.2]                   |  |
|  | <u>3.A.4.2</u>                  |  |
|  | Make claims and predictions     |  |
|  | about the action-reaction pairs |  |
|  | of forces when two objects      |  |
|  | interact using Newton's third   |  |
|  | law. [SP 6.4, 7.2]              |  |
|  | <u>3.A.4.3</u>                  |  |
|  | Analyze situations involving    |  |
|  | interactions among several      |  |
|  |                                 |  |

|  | objects by using free-body<br>diagrams that include the<br>application of Newton's third<br>law to identify forces. [SP 1.4]<br><b>3.B.1.3</b><br>Re-express a free-body<br>diagram representation into a<br>mathematical representation<br>and solve the mathematical<br>representation for the<br>acceleration of the object.<br>[SP 1.5, 2.2]<br><b>3.B.1.4</b><br>Predict the motion of an<br>object subject to forces<br>exerted by several objects<br>using an application of<br>Newton's second law in a<br>variety of physical situations.<br>[SP 6.4, 7.2]<br><b>3.B.2.1</b><br>Create and use free-body<br>diagrams to analyze physical<br>situations to solve problems<br>with motion qualitatively<br>and quantitatively.<br>[SP 1.1, 1.4, 2.2]<br><b>3.G.2.1</b><br>Connect the strength of<br>electromagnetic forces<br>with the spatial scale of the<br>situation, the magnitude of<br>the electric charges, and the |  |
|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|  | the electric charges, and the motion of the electrically                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |

| Unit 6: | 6.A                                                                                | charged objects involved.<br>[SP 7.1]<br><b>4.E.1.1</b><br>Use representations and<br>models to qualitatively<br>describe the magnetic<br>properties of some materials<br>that can be affected by<br>magnetic properties of<br>other objects in the system.<br>[SP 1.1, 1.4, 2.2]<br><b>4.E.2.1</b><br>Construct an explanation<br>of the function of a simple<br>electromagnetic device in<br>which an induced emf is<br>produced by a changing<br>magnetic flux through an area<br>defined by a current loop<br>(i.e., a simple microphone or<br>generator) or of the effect on<br>behavior of a device in which<br>an induced emf is produced<br>by a constant magnetic field<br>through a changing area.<br>[SP 6.4] | 1.2 The student can describe                                                                                                              |
|---------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Optics  | A wave is a traveling disturbance<br>that transfers energy and<br>momentum.<br>6.F | <b><u>b.A.1.2</u></b><br>Describe representations of<br>transverse and longitudinal<br>waves. [SP 1.2]<br><b><u>6.A.1.3</u></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | representations and models of natural<br>or man-made phenomena and<br>systems in the domain<br><u>5.1</u> The student can analyze data to |

| Electromagnetic radiation can be    | Analyze data (or a visual     | identify patterns or relationships.                     |
|-------------------------------------|-------------------------------|---------------------------------------------------------|
| modeled as waves or as              | representation) to identify   | 6.2 The student can construct                           |
| fundamental particles.              | patterns that indicate that a | explanations of phenomena based on                      |
| <u>6.B</u>                          | particular mechanical wave    | evidence produced through scientific                    |
| A periodic wave is one that repeats | is polarized, and construct   | practices.                                              |
| as a function of both time and      | an explanation of the fact    | 6.4 The student can make claims and                     |
| position and can                    | that the wave must have       | predictions about natural phenomena                     |
| be described by its amplitude,      | a vibration perpendicular     | based on scientific theories and models.                |
| frequency, wavelength, speed, and   | to the direction of energy    | 7.2 The student can connect concepts                    |
| energy.                             | propagation. [SP 5.1, 6.2]    | in and across domain(s) to generalize or                |
| <u>6.E</u>                          | <u>6.A.2.2</u>                | extrapolate in and/or across enduring                   |
| The direction of propagation of a   | Contrast mechanical and       | understandings and/or big ideas.                        |
| wave such as light may be           | electromagnetic waves         | 1.1 The student can create                              |
| changed when the wave               | in terms of the need for a    | representations and models of natural                   |
| encounters an interface between     | medium in wave propagation.   | or man-made phenomena and systems                       |
| two media.                          | [SP 6.4, 7.2]                 | in the domain.                                          |
| <u>6.C</u>                          | <u>6.F.1.1</u>                | 1.5 The student can re-express key                      |
| Only waves exhibit interference     | Make qualitative comparisons  | elements of natural phenomena across                    |
| and diffraction.                    | of the wavelengths of types   | multiple representations in the domain.                 |
|                                     | of electromagnetic radiation. | 1.4 The student can use                                 |
|                                     | [SP 6.4, 7.2]                 | representations and models to analyze                   |
|                                     | <u>6.F.2.1</u>                | situations or solve problems                            |
|                                     | Describe representations and  | qualitatively and quantitatively.*                      |
|                                     | models of electromagnetic     | <b><u>4.1</u></b> The student can justify the selection |
|                                     | waves that explain the        | of the kind of data needed to answer a                  |
|                                     | transmission of energy        | particular scientific question.                         |
|                                     | when no medium is present.    | 5.2 The student can refine observations                 |
|                                     | [SP 1.1]                      | and                                                     |
|                                     | <u>6.B.3.1</u>                | measurements based on data analysis.                    |
|                                     | Construct an equation         | 5.3 The student can evaluate the                        |
|                                     | relating the wavelength and   | evidence provided by                                    |
|                                     | amplitude of a wave from a    | data sets in relation to a particular                   |
|                                     | graphical representation of   | scientific question                                     |
|                                     |                               | •                                                       |

| value as a function of position | routines to quantities that describe                |
|---------------------------------|-----------------------------------------------------|
| at a given time instant and     | natural phenomena.                                  |
| vice versa, or construct        | <u><b>3.2</b></u> The student can refine scientific |
| an equation relating the        | questions.                                          |
| frequency or period and         |                                                     |
| amplitude of a wave from a      |                                                     |
| graphical representation of     |                                                     |
| the electric or magnetic field  |                                                     |
| value at a given position as    |                                                     |
| a function of time and vice     |                                                     |
| versa. [SP 1.5]                 |                                                     |
| <u>6.E.1.1</u>                  |                                                     |
| Make claims using               |                                                     |
| connections across concepts     |                                                     |
| about the behavior of light     |                                                     |
| as the wave travels from        |                                                     |
| one medium into another, as     |                                                     |
| some is transmitted, some       |                                                     |
| is reflected, and some is       |                                                     |
| absorbed. [SP 6.4, 7.2]         |                                                     |
| <u>6.E.2.1</u>                  |                                                     |
| Make predictions about          |                                                     |
| the locations of object and     |                                                     |
| image relative to the location  |                                                     |
| of a reflecting surface. The    |                                                     |
| prediction should be based      |                                                     |
| on the model of specular        |                                                     |
| reflection with all angles      |                                                     |
| measured relative to the        |                                                     |
| normal to the surface.          |                                                     |
| [SP 6.4, 7.2]                   |                                                     |
| 6.E.3.1                         |                                                     |
| Describe models of light        |                                                     |
| traveling across a boundary     |                                                     |
|                                 |                                                     |

| from one transparent material |
|-------------------------------|
| to another when the speed     |
| of propagation changes,       |
| causing a change in the       |
| path of the light ray at the  |
| boundary of the two media.    |
| [SP 1.1, 1.4]                 |
| <u>6.E.3.2</u>                |
| Plan data collection          |
| strategies as well as perform |
| data analysis and evaluation  |
| of the evidence for finding   |
| the relationship between the  |
| angle of incidence and the    |
| angle of refraction for light |
| crossing boundaries from      |
| one transparent material      |
| to another (Snell's law).     |
| [SP 4.1, 5.1, 5.2, 5.3]       |
| 6.E.3.3                       |
| Make claims and predictions   |
| about path changes for light  |
| traveling across a boundary   |
| from one transparent material |
| to another at non-normal      |
| angles resulting from         |
| changes in the speed of       |
| propagation. [SP 6.4, 7.2]    |
| 6.E.4.1                       |
| Plan data collection          |
| strategies and perform data   |
| analysis and evaluation       |
| of evidence about the         |
| formation of images due       |
|                               |

| to reflection of light from     |
|---------------------------------|
| curved spherical mirrors.       |
| [SP 3.2, 4.1, 5.1, 5.2, 5.3]    |
| <u>6.E.4.2</u>                  |
| Use quantitative and            |
| qualitative representations     |
| and models to analyze           |
| situations and solve            |
| problems about image            |
| formation occurring due to      |
| the reflection of light from    |
| surfaces. [SP 1.4, 2.2]         |
| <u>6.E.5.1</u>                  |
| Use quantitative and            |
| qualitative representations     |
| and models to analyze           |
| situations and solve            |
| problems about image            |
| formation occurring due to      |
| the refraction of light through |
| thin lenses. [SP 1.4, 2.2]      |
| <u>6.E.5.2</u>                  |
| Plan data collection            |
| strategies, perform data        |
| analysis and evaluation         |
| of evidence, and refine         |
| scientific questions about      |
| the formation of images due     |
| to refraction for thin lenses.  |
| [SP 3.2, 4.1, 5.1, 5.2, 5.3]    |
| <u>6.C.1.1</u>                  |
| Make claims and predictions     |
| about the net disturbance       |
| that occurs when two waves      |
|                                 |

| overlap. Examples include      |  |
|--------------------------------|--|
| standing waves. [SP 6.4, 7.2]  |  |
| <u>6.C.1.2</u>                 |  |
| Construct representations to   |  |
| graphically analyze situations |  |
| in which two waves overlap     |  |
| over time using the principle  |  |
| of superposition. [SP 1.4]     |  |
| <u>6.C.2.1</u>                 |  |
| Make claims about the          |  |
| diffraction pattern produced   |  |
| when a wave passes             |  |
| through a small opening,       |  |
| and qualitatively apply the    |  |
| wave model to quantities that  |  |
| describe the generation of     |  |
| a diffraction pattern when     |  |
| a wave passes through an       |  |
| opening whose dimensions       |  |
| are comparable to the          |  |
| wavelength of the wave.        |  |
| [SP 1.4, 6.4, 7.2]             |  |
| 6.C.3.1                        |  |
| Qualitatively apply the wave   |  |
| model to quantities that       |  |
| describe the generation        |  |
| of interference patterns       |  |
| to make predictions about      |  |
| interference patterns that     |  |
| form when waves pass           |  |
| through a set of openings      |  |
| whose spacing and widths       |  |
| are small compared with the    |  |
| wavelength of the waves.       |  |
|                                |  |

|                                                             |                                                                                                                                                                                                                                                                                                                                                                                               | [SP 1.4, 6.4]<br><b><u>6.C.4.1</u></b><br>Predict and explain, using<br>representations and models,<br>the ability or inability of<br>waves to transfer energy<br>around corners and behind<br>obstacles in terms of the<br>diffraction property of waves<br>in situations involving various<br>kinds of wave phenomena,<br>including sound and light.<br>[SP 6.4, 7.2]                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit 7:<br>Quantum,<br>Atomic,<br>and<br>Nuclear<br>Physics | <ul> <li><b>1.A</b> The internal structure of a system determines many properties of the system <b>3.G</b> Certain types of forces are considered fundamental. <b>5.C</b> The electric charge of a system is conserved. <b>5.D</b> The linear momentum of a system is conserved. <b>5.G</b> Nucleon number is conserved. <b>5.B</b> The energy of a system is conserved. <b>1.C</b></li></ul> | <ul> <li><b>1.A.2.1</b> Construct representations <ul> <li>of the differences between</li> <li>a fundamental particle</li> <li>and a system composed</li> <li>of fundamental particles,</li> <li>and relate this to the</li> <li>properties and scales of the</li> <li>systems being investigated.</li> </ul> [SP 1.1, 7.1] <b>1.A.4.1</b> Construct representations <ul> <li>of the energy-level</li> <li>structure of an electron in</li> <li>an atom, and relate this to</li> <li>the properties and scales</li> <li>of the systems being</li> <li>investigated. [SP 1.1, 7.1]</li> </ul> <b>3.G.3.1</b></li></ul> | <ul> <li>1.1 The student can create<br/>representations and models of natural<br/>or man-made phenomena and systems<br/>in the domain.</li> <li>1.2 The student can describe<br/>representations and models of natural<br/>or man-made phenomena and<br/>systems in the domain</li> <li>1.4 The student can use<br/>representations and models to analyze<br/>situations or solve problems<br/>qualitatively and quantitatively.*</li> <li>7.2 The student can connect concepts<br/>in and across domain(s) to generalize or<br/>extrapolate in and/or across enduring<br/>understandings and/or big ideas</li> <li>7.1 The student can connect<br/>phenomena and models across spatial<br/>and temporal scales.*</li> </ul> |

Objects and systems have properties of inertial mass and gravitational mass that are experimentally verified to be the same and satisfy conservation principles.

## <u>4.C</u>

Interactions with other objects or systems can change the total energy of a system.

## <u>1.D</u>

Classical mechanics cannot describe all properties of objects.

# <u>6.C</u>

Only waves exhibit interference and diffraction.

# <u>6.G</u>

All matter can be modeled as waves or particles.

### <u>6.F</u>

Electromagnetic radiation can be modeled as waves or as fundamental particles.

### <u>7.C</u>

At the quantum scale, matter is described by a wave function, which leads to a probabilistic description of the microscopic world. Identify the strong force as the force that is responsible for holding the nucleus together. [SP 7.2] <u>5.C.1.1</u>

Analyze electric charge conservation for nuclear and elementary particle reactions, and make predictions related to such reactions based on conservation of charge. [SP 6.4, 7.2]

### <u>5.D.1.6</u>

Make predictions of the dynamical properties of a system undergoing a collision by application of the principle of linear momentum conservation and the principle of the conservation of energy in situations in which an elastic collision may also be assumed. [SP 6.4]

### <u>5.D.1.7</u>

Classify a given collision situation as elastic or inelastic, justify the selection of conservation of linear momentum and restoration of kinetic energy as the appropriate principles for analyzing an elastic collision, solve for missing variables, and calculate their values. **2.2** The student can apply mathematical routines to quantities that describe natural phenomena

**<u>2.1</u>** The student can justify the selection of a mathematical routine to solve problems.

**<u>6.4</u>** The student can make claims and predictions about natural phenomena based on scientific theories and models.

**<u>2.3</u>** The student can estimate numerically quantities

that describe natural phenomena

**<u>6.3</u>** The student can articulate the reasons

that scientific explanations and theories are

refined or replaced

**<u>6.1</u>** The student can justify claims with evidence.

**7.1** The student can connect phenomena and models across spatial and temporal scales

| [SP 2.1, 2.2]                 |  |
|-------------------------------|--|
| <u>5.D.2.5</u>                |  |
| Classify a given collision    |  |
| situation as elastic or       |  |
| inelastic, justify the        |  |
| selection of conservation     |  |
| of linear momentum as the     |  |
| appropriate solution method   |  |
| for an inelastic collision,   |  |
| recognize that there is a     |  |
| common final velocity for     |  |
| the colliding objects in      |  |
| the totally inelastic case,   |  |
| solve for missing variables,  |  |
| and calculate their values.   |  |
| [SP 2.1, 2.2]                 |  |
| 5.D.2.6                       |  |
| Apply the conservation of     |  |
| linear momentum to a closed   |  |
| system of objects involved    |  |
| in an inelastic collision to  |  |
| predict the change in kinetic |  |
| energy. [SP 6.4, 7.2]         |  |
| 5.D.3.2                       |  |
| Make predictions about the    |  |
| velocity of the center of     |  |
| mass for interactions within  |  |
| a defined one-dimensional     |  |
| system. [SP 6.4]              |  |
| 5.D.3.3                       |  |
| Make predictions about the    |  |
| velocity of the center of     |  |
| mass for interactions within  |  |
| a defined two-dimensional     |  |
|                               |  |

| system. [SP 6.4]              |
|-------------------------------|
| <u>5.G.1.1</u>                |
| Apply conservation of         |
| nucleon number and            |
| conservation of electric      |
| charge to make predictions    |
| about nuclear reactions       |
| and decays such as            |
| fission, fusion, alpha decay, |
| beta decay, or gamma          |
| decay. [SP 6.4]               |
| <u>5.B.2.1</u>                |
| Calculate the expected        |
| behavior of a system using    |
| the object model (i.e., by    |
| ignoring changes in internal  |
| structure) to analyze a       |
| situation. Then, when the     |
| model fails, justify the use  |
| of conservation of energy     |
| principles to calculate       |
| the change in internal        |
| energy due to changes in      |
| internal structure because    |
| the object is actually a      |
| system. [SP 1.4, 2.1]         |
| <u>5.B.4.1</u>                |
| Describe and make             |
| predictions about the         |
| internal energy of systems.   |
| [SP 6.4, 7.2]                 |
| 5.B.4.2                       |
| Calculate changes in kinetic  |
| energy and potential energy   |
|                               |

|  | of a system using information         |  |
|--|---------------------------------------|--|
|  | from representations of that          |  |
|  | system. [SP 1.4, 2.1, 2.2]            |  |
|  | <u>5.B.5.4</u>                        |  |
|  | Make claims about the                 |  |
|  | interaction between a system          |  |
|  | and its environment in which          |  |
|  | the environment exerts a              |  |
|  | force on the system, thus             |  |
|  | doing work on the system              |  |
|  | and changing the energy of            |  |
|  | the system (kinetic energy            |  |
|  | plus potential energy).               |  |
|  | [SP 6.4, 7.2]                         |  |
|  | <u>5.B.8.1</u>                        |  |
|  | Describe emission or                  |  |
|  | absorption spectra                    |  |
|  | associated with electronic            |  |
|  | or nuclear transitions as             |  |
|  | transitions between allowed           |  |
|  | energy states of the atom             |  |
|  | in terms of the principle             |  |
|  | of energy conservation,               |  |
|  | including characterization            |  |
|  | of the frequency of radiation         |  |
|  | emitted or absorbed.                  |  |
|  | [SP 1.2, 7.2]                         |  |
|  | <u>5.B.11.1</u>                       |  |
|  | Apply conservation of                 |  |
|  | mass and conservation                 |  |
|  | of energy concepts to a               |  |
|  | natural phenomenon, and               |  |
|  | use the equation E=mc <sup>2</sup> to |  |
|  | make a related calculation.           |  |
|  |                                       |  |

|  |                                | 1 |
|--|--------------------------------|---|
|  | [SP 2.2, 7.2]                  |   |
|  | <u>1.C.4.1</u>                 |   |
|  | Articulate the reasons that    |   |
|  | the theory of conservation     |   |
|  | of mass was replaced by the    |   |
|  | theory of conservation of      |   |
|  | mass–energy. [SP 6.3]          |   |
|  | 4.C.4.1                        |   |
|  | Apply mathematical routines    |   |
|  | to describe the relationship   |   |
|  | between mass and energy,       |   |
|  | and apply this concept         |   |
|  | across domains of scale.       |   |
|  | [SP 2.2, 2.3, 7.2]             |   |
|  | <u>1.D.1.1</u>                 |   |
|  | Explain why classical          |   |
|  | mechanics cannot describe      |   |
|  | all properties of objects by   |   |
|  | articulating the reasons that  |   |
|  | classical mechanics must       |   |
|  | be refined and an alternative  |   |
|  |                                |   |
|  | explanation developed when     |   |
|  | classical particles display    |   |
|  | wave properties. [SP 6.3]      |   |
|  | <u>1.D.3.1</u>                 |   |
|  | Articulate the reasons that    |   |
|  | classical mechanics must be    |   |
|  | replaced by special relativity |   |
|  | to describe the experimental   |   |
|  | results and theoretical        |   |
|  | predictions that show that     |   |
|  | the properties of space        |   |
|  | and time are not absolute.     |   |
|  | [Students will be expected     |   |

| to recognize situations in       |
|----------------------------------|
| which nonrelativistic classical  |
| physics breaks down and          |
| to explain how relativity        |
| addresses that breakdown,        |
| but students will not be         |
| expected to know in which of     |
| two reference frames a given     |
| series of events corresponds     |
| to a greater or lesser time      |
| interval, or a greater or lesser |
| spatial distance; they will just |
| need to know that observers      |
| in the two reference frames      |
| can "disagree" about some        |
| time and distance intervals.]    |
| [SP 6.3, 7.1]                    |
| 6.C.1.1                          |
| Make claims and predictions      |
| about the net disturbance        |
| that occurs when two waves       |
| overlap. Examples include        |
| standing waves. [SP 6.4, 7.2]    |
| 6.C.1.2                          |
| Construct representations to     |
| graphically analyze situations   |
| in which two waves overlap       |
| over time using the principle    |
| of superposition. [SP 1.4]       |
| <u>6.C.2.1</u>                   |
| Make claims about the            |
| diffraction pattern produced     |
| when a wave passes through a     |
| small opening, and qualitatively |
|                                  |

| apply the wave model to         |  |
|---------------------------------|--|
| quantities that describe the    |  |
| generation of a diffraction     |  |
| pattern when a wave passes      |  |
| through an opening whose        |  |
| dimensions are comparable       |  |
| to the wavelength of the wave.  |  |
| [SP 1.4, 6.4, 7.2]              |  |
| <u>6.C.3.1</u>                  |  |
| Qualitatively apply the wave    |  |
| model to quantities that        |  |
| describe the generation         |  |
| of interference patterns        |  |
| to make predictions about       |  |
| interference patterns that      |  |
| form when waves pass            |  |
| through a set of openings       |  |
| whose spacing and widths        |  |
| are small compared with the     |  |
| wavelength of the waves.        |  |
| [SP 1.4, 6.4]                   |  |
| <u>6.C.4.1</u>                  |  |
| Predict and explain, using      |  |
| representations and models,     |  |
| the ability or inability of     |  |
| waves to transfer energy        |  |
| around corners and behind       |  |
| obstacles in terms of the       |  |
| diffraction property of waves   |  |
| in situations involving various |  |
| kinds of wave phenomena,        |  |
| including sound and light.      |  |
| [SP 6.4, 7.2]                   |  |
| <u>6.G.1.1</u>                  |  |
|                                 |  |

| Make predictions about          |
|---------------------------------|
| using the scale of the          |
| problem to determine at what    |
| regimes a particle or wave      |
| model is more appropriate.      |
| [SP 6.4, 7.1]                   |
| <u>6.G.2.1</u>                  |
| Articulate the evidence         |
| supporting the claim that       |
| a wave model of matter          |
| is appropriate to explain       |
| the diffraction of matter       |
| interacting with a crystal,     |
| given conditions where          |
| a particle of matter has        |
| momentum corresponding          |
| to a de Broglie wavelength      |
| smaller than the separation     |
| between adjacent atoms in       |
| the crystal. [SP 6.1]           |
| 6.G.2.2                         |
| Predict the dependence of       |
| major features of a diffraction |
| pattern (e.g., spacing          |
| between interference            |
| maxima) based on the            |
| particle speed and de Broglie   |
| wavelength of electrons in      |
| an electron beam interacting    |
| with a crystal. (De Broglie     |
| wavelength need not be          |
| given, so students may need     |
| to obtain it.) [SP 6.4]         |
| <u>6.F.3.1</u>                  |
|                                 |

| - |                                |  |
|---|--------------------------------|--|
|   | Support the photon model of    |  |
|   | radiant energy with evidence   |  |
|   | provided by the photoelectric  |  |
|   | effect. [SP 6.4]               |  |
|   | <u>6.F.4.1</u>                 |  |
|   | Select a model of radiant      |  |
|   | energy that is appropriate to  |  |
|   | the spatial or temporal scale  |  |
|   | of an interaction with matter. |  |
|   | [SP 6.4, 7.1]                  |  |
|   | 7.C.1.1                        |  |
|   | Use a graphical wave function  |  |
|   | representation of a particle   |  |
|   | to predict qualitatively the   |  |
|   | probability of finding a       |  |
|   | particle in a specific spatial |  |
|   | region. [SP 1.4]               |  |
|   | 7.C.2.1                        |  |
|   | Use a standing wave model      |  |
|   | in which an electron orbit     |  |
|   | circumference is an integer    |  |
|   | multiple of the de Broglie     |  |
|   | wavelength to give a           |  |
|   | qualitative explanation that   |  |
|   | accounts for the existence     |  |
|   | of specific allowed energy     |  |
|   | states of an electron in an    |  |
|   | atom. [SP 1.4]                 |  |
|   | 7.C.3.1                        |  |
|   | Predict the number of          |  |
|   | radioactive nuclei remaining   |  |
|   | in a sample after a certain    |  |
|   | period of time, and also       |  |
|   | predict the missing species    |  |
|   | product the missing species    |  |

| (alpha, beta, gamma) in a       |
|---------------------------------|
| radioactive decay. [SP 6.4]     |
| <u>7.C.4.1</u>                  |
| Construct or interpret          |
| representations of transitions  |
| between atomic energy           |
| states involving the emission   |
| and absorption of photons.      |
| [For questions addressing       |
| stimulated emission,            |
| students will not be expected   |
| to recall the details of the    |
| process, such as the fact that  |
| the emitted photons have the    |
| same frequency and phase        |
| as the incident photon; but     |
| given a representation of       |
| the process, students are       |
| expected to make inferences     |
| such as figuring out from       |
| energy conservation that,       |
| since the atom loses energy     |
| in the process, the emitted     |
| photons taken together must     |
| carry more energy than the      |
| incident photon.] [SP 1.1, 1.2] |
|                                 |
|                                 |