Objectives

(A) Amazing Arithmetic Arrays – Patterns
- Search mathematical arrays for content and patterns and create their own arrays to see if the pattern holds true.

Performance: 1.6, 4.1
Knowledge: (MA) 4
MAGLE: AR.1.A (Gr. 5)
NETS: (3-5) 8
DOK: 3

In-class self-evaluation
- Teacher will evaluate conclusions drawn from 3x3 arrays using a scoring guide.

(B) Zip, Zap, Zop - Logic
- Use logical reasoning and strategy to guess the numbers chosen by their partners in the fewest tries possible.

Performance: 1.6, 3.6
Knowledge: (MA) 4
MAGLE: AR.1.A (Gr. 5)
NETS: (3-5) 8
DOK: 3

In-class self-evaluation

Assessment/Evaluation

- In-class self-evaluation
- Teacher will evaluate conclusions drawn from 3x3 arrays using a scoring guide

Instructional Activities

- Study array and list at least 10 patterns
- Share findings
- Compare and contrast patterns in 3 arrays
- Fill in blank arrays
- Explore patterns
- Draw numerical conclusions

- Play zip, zap, zop as a class
- Students play in pairs, recording clues and guesses
- Extend the game by allowing 3 and 4 digit numbers
- Students will show strategies to the class
<table>
<thead>
<tr>
<th>Objectives</th>
<th>Assessment/Evaluation</th>
<th>Instructional Activities</th>
</tr>
</thead>
</table>
| **(C) The Square Challenge – Problem Solving**
 - Use problem solving challenges to find the number of squares of all sizes in a 6x6 grid
 - Use information to determine how many squares are on an 8x8 checkerboard

Performance: 1.6, 4.6
Knowledge: (MA) 4
MAGLE: AR.1.A (Gr. 5)
NETS: N/A
DOK: 3

Teacher will evaluate paragraphs using a scoring guide
Students will:
- count all sizes of squares in 6x6 grid in small groups
- use complete sentences to explain their findings
- use manipulatives to check their findings
- determine patterns in 6x6 grid
- apply patterns to 8x8 grid
- explain in a paragraph |

| **(D) Lines, Triangles and Squares - Geometry**
 - Find all regions a square can be divided into with any number of straight lines
 - Discover geometric principles
 - Find algebraic explanations for the work

Performance: 1.6, 3.6
Knowledge: (MA) 4
MAGLE: GSR.1.C (Gr. 5)
NETS: N/A
DOK: 3

Teacher will evaluate paragraphs using a scoring guide
Students will:
- Divide squares into regions using 3 straight lines, 4 straight lines, 5 straight lines and use toothpicks as manipulatives
- Record findings in a chart
- Write an explanation of findings in a paragraph |

| **(E) Set Counting – Counting Sets**
 - Find all possible ways to put objects into 2 and 3 sets
 - Discover benefits of a systematic approach to problem solving as opposed to trial and error

Performance: 3.6
Knowledge: (MA) 1
MAGLE: AR.3.A (Gr. 6)
NETS: N/A
DOK: 4

- In-class self-evaluation
- Teacher will evaluate paragraphs using a scoring guide
Students will:
- place 14 objects into 2 sets as many ways as possible
- plan an organized approach to creating sets
- test their approach by putting objects into 3 sets
- share approach with class
- write a paragraph explaining the benefit of their approach |
<table>
<thead>
<tr>
<th>Objectives</th>
<th>Assessment/Evaluation</th>
<th>Instructional Activities</th>
</tr>
</thead>
</table>
| (F) **Tinkering with Twos – Problem Solving**
 - Combine twos with various mathematical operations to make number sentences resulting in the numbers 2-10
 - Discover order of operations

 Performance: 3.6
 Knowledge: (MA) 1
 MAGLE: NO.1.C; M.2.C (All Gr. 6)
 NETS: (3-5) 8
 DOK: 4 | Peer-evaluation of extensions |
 - Teacher introduces order of operations
 - Combine 5 twos with one or more arithmetic symbols so the resulting answer is 1-10
 - Write complete sentences describing the process used
 - Create an extension problem, trade papers and solve each other’s extensions |