Curriculum: Mechatronics II

Curricular Unit: Safety Procedures (Both Electronics and Robotics)

Instructional: A. Identify and apply workplace safety procedures

Standard Alignments (Section 2)

<table>
<thead>
<tr>
<th>Standard Alignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>HECLE: HME.4.A</td>
</tr>
<tr>
<td>PEGLE: PALW.3.B</td>
</tr>
<tr>
<td>SCCLE: SC1.1.E (Chemistry I)</td>
</tr>
<tr>
<td>Knowledge: (CA) 3 (H/PE) 6,7</td>
</tr>
<tr>
<td>CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4</td>
</tr>
<tr>
<td>NETS: 1c</td>
</tr>
<tr>
<td>Performance: 3.1, 4.7</td>
</tr>
</tbody>
</table>

Unit (Section 3)

Learning Targets:

- Identify types, purposes, and operations of fire extinguishers and suppression resources
- Recognize when first aid is needed for occupational injuries and follow proper procedures
- Identify electrical hazards
- Demonstrate appropriate work place safety practices (e.g., electrical, hand tools, power tools, fall protection, PPE, lockout/tag out, and environmental hazards)
- Identify hazard of RF radiation devices
- Demonstrate safe and proper use of AC line operated equipment (e.g., isolation transformers, grounding, leakage current testing, and GFI)

Instructional Strategies

- IML safety curriculum – correct ways to measure current voltage and resistance
- Labs:
 - Current
 - Voltage
 - Resistance
Assessments/Evaluations:

- **Formative:**
 - IML safety worksheets from Units I, II, and III (evaluated using a scoring guide)
 - Techniques introduced in the unit are observed and monitored every day with each activity
 - End of unit questions
 - Student demonstration/performance of proper safety procedures
- **Summative:** Three practical exams evaluated using a scoring guide

Sample Assessment Questions:

- The device that opens the circuit (burns out) when the circuit is overloaded is a fuse?
 T or F

Instructional Resources/Tools:

- Instructional materials laboratory
- University of Missouri-Columbia (IML)

Cross Curricular Connections:

- **ELA:**
 - Technical reading
 - Writing
 - Discussion
- **Health:** Applying practices that preserve and enhance the safety and health of others
- **Physical Education:** Differentiating between life threatening and non-life threatening injuries and select the appropriate level of treatment
- **Science:** Identifying electrical and radiation hazards

Depth of Knowledge (Section 5)

DOK: 3
Curriculum: Mechatronics II

Curricular Unit: Digital Circuits (Electronics II Portion)

Instructional: B. Digital vs. analog circuits

Standard Alignments (Section 2)

| SCCLE: SC7.1.A (Physical Science) |
| Knowledge: (CA) 1 (MA) 3 |
| CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4; N-Q.1 |
| NETS: 3a,b |
| Performance: 1.6, 1.7, 3.4 |

Unit (Section 3)

Learning Targets:

- Identify several characteristics of digital circuits as opposed to linear (analog) circuits
- Differentiate between digital and analog signals and identify the HIGH and LOW portions of the digital waveform
- **Analyze simple logic-level indicator circuits**

Instructional Strategies:

- Chapters 1 and 2:
 - Lecture and discussion using Tokheim PowerPoints
 - Perform labs assigned from Tokheim lab book
 - Read and answer chapter:
 - self-test questions
 - review questions of Tokheim text
- Demonstrate skills collaboratively and individually using simulation and virtual lab software
- Complete relevant live work when available

Assessments/Evaluations:

- Formative assessment of:
 - Tokheim PowerPoint quizzes
 - chapters 1 and 2:
 - self-tests
 - review questions
 - worksheets
- Two lab evaluations:
 - One formative
 - One summative
- *Digital Electronics* textbook chapters 1 and 2 summative tests
- Summative/formative assessment of relevant live work when available
Sample Assessment Questions:

- Generally, electronics circuits are classified as either analog or _________?

Instructional Resources/Tools:

- *Digital Electronics Principles and Applications* (Roger Tolkheim):
 - textbook, and teacher resources
 - lab manual
- National Instruments Multisim computer simulation programs
- ETCAI Electronics training software
- Electronic supplies

Cross Curricular Connections:

- **ELA:**
 - Technical reading
 - Writing
 - Discussion
- **Math:** Number sense and the operation of real numbers

Depth of Knowledge (Section 5)

DOK: 4
Curriculum: Mechatronics II

Curricular Unit: Digital Logic System Components (Electronics II Portion)

Instructional: C. Analyze and interpret digital logic system components

Standard Alignments (Section 2)

| SCCLE: SC7.1.A (Physical Science) |
| Knowledge: (CA) 3 (MA) 6 |
| CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4; N-Q.1; S-CP.1 |
| NETS: 3a,b |
| Performance: 1.8, 1.10, 3.1, 3.2, 3.5, 4.1 |

Unit (Section 3)

Learning Targets:

- Interpret schematics in order to design, analyze, test, and troubleshoot the following circuits:
 - Basic logic gate operations
 - Clock and timing
 - Counter and controller
- Convert number systems and codes (e.g., binary, hex, ASCII and BCD)

Instructional Strategies:

- Digital textbook and lab book chapters 1-2 through reading and chapter self-test questions
- Students will:
 - construct and evaluate circuits using a variety of:
 - logic gates
 - digital IC’s
 - build labs using Multisim computer simulation software

Assessments/Evaluations:

- Formative assessment of:
 - Tokheim PowerPoint quizzes
 - chapter 1 and 2:
 - self-tests
 - review questions
 - worksheets
- Two lab evaluations:
 - One formative
 - One summative
- Digital Electronics textbook chapters 1 and 2 summative tests
- Summative/formative assessment of relevant live work when available
Sample Assessment Questions:

- Write the Boolean expression for a two-input AND gate.

Instructional Resources/Tools:

- *Digital Electronics Principles and Applications* (Roger Tokheim):
 - textbook
 - lab manual
- Multisim computer simulation software
- ETCAI training products
- Electronics supplies

Cross Curricular Connections:

- English:
 - Technical reading
 - Writing
 - Discussion
- Math:
 - Number sense
 - Basic logic operations

Depth of Knowledge (Section 5)

DOK: 4
Curriculum: Mechatronics II

Curricular Unit: Logic Gates (Electronics II Portion)

Instructional: D. Basic logic gates and truth table interpretation

Standard Alignments (Section 2)

<table>
<thead>
<tr>
<th>SCCLE: SC7.1.A (Physical Science)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge: (CA) 3 (MA) 6</td>
</tr>
<tr>
<td>CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4; N-Q.1; S-CP.1</td>
</tr>
<tr>
<td>NETS: 3a,b</td>
</tr>
<tr>
<td>Performance: 1.8, 1.10, 3.1, 3.2, 3.5</td>
</tr>
</tbody>
</table>

Unit (Section 3)

Learning Targets:

- Identify the name, symbol, truth table, function, and Boolean expression for the seven basic logic gates:
 - AND
 - OR
 - NOT
 - NAND
 - NOR
 - XOR
 - XNOR

- Troubleshoot simple logic gate circuits

- Identify pin numbers and manufacturer’s marking on both TTL and CMOS DIP package ICs

Instructional Strategies:

- Chapter 3:
 - Lecture and discussion using Tokheim PowerPoints
 - Perform labs assigned from Tokheim lab book
 - Read and answer chapter:
 - self-test questions
 - review questions of Tokheim text
- Demonstrate skills collaboratively and individually using simulation and virtual lab software
- Complete relevant live work when available
Assessments/Evaluations:

- Formative assessment of:
 - Tokheim PowerPoint quizzes
 - chapter 3:
 - self-tests
 - review questions
 - worksheets
- Two lab evaluations:
 - One formative
 - One summative
- *Digital Electronics* textbook chapter 3 summative test
- Summative/formative assessment of relevant live work when available

Sample Assessment Questions:

- The truth table for a three-input NAND gate would have ________ lines to include all the possible input combinations.

Instructional Resources/Tools:

- *Digital Electronics Principles and Applications* (Roger Tokheim):
 - textbook and teacher resources
 - lab manual
- Multisim computer simulation software
- ETCAI computer training software

Cross Curricular Connections:

- ELA:
 - Technical reading
 - Writing
 - Discussion
- Math:
 - Number sense
 - Basic logic operations

Depth of Knowledge (Section 5)

DOK: 4
Curriculum: Mechatronics II

Curricular Unit: Combinational Logic Circuits (Electronics II Portion)

Instructional: E. Combinational logic circuits

Standard Alignments (Section 2)

| SCCLE: SC7.1.A (Physical Science) |
| Knowledge: (CA) 3 (MA) 6 |
| CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4; N-Q.1; S-CP.1 |
| NETS: 3a,b |
| Performance: 1.8, 1.10, 3.1, 3.2, 3.5, 4.1 |

Unit (Section 3)

Learning Targets:

- Interpret schematics in order to design, analyze, test, and troubleshoot the following circuits:
 - TTL
 - CMOS
 - Encoding
 - Decoding
 - Seven-Segment Display
 - Programmable Logic Devices (PLDs)

- **Use Karnaugh Mapping to simplify Boolean expressions**

Instructional Strategies:

- Chapters 4-6:
 - Lecture and discussion using Tokheim PowerPoints
 - Perform labs assigned from Tokheim lab book
 - Read and answer chapter:
 - self-test questions
 - review questions of Tokheim text
- Demonstrate skills collaboratively and individually using simulation and virtual lab software
- Complete relevant live work when available

Assessments/Evaluations:

- Formative assessment of:
 - Tokheim PowerPoint quizzes
 - chapter 4-6:
 - self-tests
 - review questions
 - worksheets
• Two lab evaluations:
 • One formative
 • One summative
• Digital Electronics textbook chapter 4-6 summative test
• Summative/formative assessment of relevant live work when available

Sample Assessment Questions:

• Write the keyboard version of the Boolean expression (C’)(B’)(A) +(B)(A’) = Y.

Instructional Resources/Tools:

• Digital Electronics Principles and Applications (Roger Tokheim):
 • textbook and teacher resources
 • lab manual
• Multisim computer simulation software
• ETCAI computer training software

Cross Curricular Connections:

• ELA:
 • Technical reading
 • Writing
 • Discussion
• Math:
 • Number sense
 • Basic logic operations

Depth of Knowledge (Section 5)

DOK: 4
Curriculum: Mechatronics II

Curricular Unit: Flip-Flops, Counters, and Shift Registers (Electronics II Portion)

Instructional: F. Analyze flip-flops, counters, and shift registers

Standard Alignments (Section 2)

| SCCLE: SC7.1.A (Physical Science) |
| Knowledge: (CA) 3 (MA) 6 |
| CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4; N-Q.1; S-CP.1 |
| NETS: 3a,b |
| Performance: 1.8, 1.10, 3.1, 3.2, 3.5 |

Unit (Section 3)

Learning Targets:

- Interpret schematics in order to design, analyze, test, and troubleshoot the following circuits:
 - R-S Flip-Flops
 - Clocked R-S Flip Flop
 - D Flip-Flop
 - J-K Flip Flop
 - Schmitt Trigger
 - Ripple Counters
 - Synchronous Counters
 - Three-Digit IC Counters
 - Serial-Load Shift Registers
 - Parallel-Load Shift Registers

Instructional Strategies:

- Chapters 7-9:
 - Lecture and discussion using Tokheim PowerPoints
 - Perform labs assigned from Tokheim lab book
 - Read and answer chapter:
 - self-test questions
 - review questions of Tokheim text
- Demonstrate skills collaboratively and individually using simulation and virtual lab software
- Complete relevant live work when available
Assessments/Evaluations:

- Formative assessment of:
 - Tokheim PowerPoint quizzes
 - chapter 7-9:
 - self-tests
 - review questions
 - worksheets
- Two lab evaluations:
 - One formative
 - One summative
- *Digital Electronics* textbook chapter 7-9 summative test
- Summative/formative assessment of relevant live work when available

Sample Assessment Questions:

- List the mode of operation of the clocked R-S flip-flop for each input pulse shown in Fig. 7-9. Answer with the terms “set,” “reset,” “hold,” and prohibited.”

Instructional Resources/Tools:

- *Digital Electronics Principles and Applications* (Roger Tokheim):
 - textbook and teacher resources
 - lab manual
- Multisim computer simulation software
- ETCAI computer training software

Cross Curricular Connections:

- ELA:
 - Technical reading
 - Writing
 - Discussion
- Math:
 - Number sense
 - Basic logic operations

Depth of Knowledge (Section 5)

DOK: 4
Curriculum: Mechatronics II

Curricular Unit: Memories and A/D, D/A converters (Electronics II Portion)

Instructional: G. Analyze memory and A/D, D/A converters

Standard Alignments (Section 2)

<table>
<thead>
<tr>
<th>SCCLE: SC7.1.A (Physical Science)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge: (CA) 3 (MA) 6</td>
</tr>
<tr>
<td>CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4; N-Q.1; S-CP.1</td>
</tr>
<tr>
<td>NETS: 3a,b</td>
</tr>
<tr>
<td>Performance: 1.8, 1.10, 3.1, 3.2, 3.5</td>
</tr>
</tbody>
</table>

Unit (Section 3)

Learning Targets:

- Interpret schematics in order to design, analyze, test, and troubleshoot the following circuits:
 - Random-Access Memory (RAM)
 - Static RAM ICs
 - Read-Only Memory (ROM)
 - Programmable Read-Only Memory (PROM)
 - D/A (Digital to Analog) Conversion
 - A/D (Analog to Digital) Conversion
 - A/D Converter Specifications
 - A/D Converter IC
 - Digital Light Meter

Instructional Strategies:

- Chapters 11 and 14:
 - Lecture and discussion using Tokheim PowerPoints
 - Perform labs assigned from Tokheim lab book
 - Read and answer chapter:
 - self-test questions
 - review questions
 of Tokheim text
- Demonstrate skills collaboratively and individually using simulation and virtual lab software
- Complete relevant live work when available
Assessments/Evaluations:

- Formative assessment of:
 - Tokheim PowerPoint quizzes
 - chapters 11 and 14:
 - self-tests
 - review questions
 - worksheets
- Two lab evaluations:
 - One formative
 - One summative
 - *Digital Electronics* textbook chapters 11 and 14 summative test
 - Summative/formative assessment of relevant live work when available

Sample Assessment Questions:

- List three general categories of bulk storage devices based on the technology each uses.

Instructional Resources/Tools:

- *Digital Electronics Principles and Applications* (Roger Tokheim):
 - textbook and teacher resources
 - lab manual
- Multisim computer simulation software
- ETCAI computer training software

Cross Curricular Connections:

- ELA:
 - Technical reading
 - Writing
 - Discussion
- Math:
 - Number sense
 - Basic logic operations

Depth of Knowledge (Section 5)

DOK: 4
Curriculum: Mechatronics II

Curricular Unit: Basic Electronic Circuits and Devices (Electronics II Portion)

Instructional: H. Test basic electronic circuits and devices

Standard Alignments (Section 2)

<table>
<thead>
<tr>
<th>SCCLE: SC7.1.A (Physical Science)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge: (CA) 1 (MA) 1 (SC) 7</td>
</tr>
<tr>
<td>CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4; N-Q.1; A-CED.4</td>
</tr>
<tr>
<td>NETS: 6c</td>
</tr>
<tr>
<td>Performance: 1.8, 2.2, 3.5</td>
</tr>
</tbody>
</table>

Unit (Section 3)

Learning Targets:

- Evaluate and test sources of DC and AC signals and power
- Apply Ohm’s law
- Interpret schematics in order to design, analyze, test, and troubleshoot the following circuits:
 - DC circuits (e.g., parallel and series-parallel)
 - Bridge circuits
 - Magnetic and electromagnetic devices
 - Transformers
 - Capacitors
 - Inductors
 - Resistive devices
 - Basic circuit controls (e.g., switches, fuses, and circuit breakers)
 - AC series R/L/C (resistance, inductance, capacitance) and filter circuits
 - AC parallel R/L/C and filter circuits
 - Time constants
 - Transformers, basic circuit controls, R/L/C series and parallel circuits

Instructional Strategies:

- Chapters 3-13:
 - Lecture and discussion using Fowler PowerPoints
 - Perform labs assigned from Fowler lab book
 - Read and answer chapter:
 - self-test questions
 - review questions of Fowler text
- Demonstrate skills collaboratively and individually using simulation and virtual lab software
- Complete relevant live work when available

Assessments/Evaluations:

- Formative assessment of:
 - Fowler PowerPoint quizzes
 - chapter 3-13:
 - self-tests
 - review questions
 - worksheets
- Two lab evaluations:
 - One formative
 - One summative
- Electricity textbook chapters 3-13 summative tests
- Summative/formative assessment of relevant live work when available

Sample Assessment Questions:

- True or false. The resistance of a parallel resistor can be measured while the resistor is connected in the circuit.

Instructional Resources/Tools:

- *Electricity Principles and Applications* (Richard J. Fowler):
 - textbook, and teacher resources
 - lab manual
- National Instruments Multisim computer simulation programs
- ETCAI Electronics training software
- Electronic supplies

Cross Curricular Connections:

- ELA:
 - Technical reading
 - Writing
 - Discussion
- Math:
 - Number sense
 - Solve problems with formulas

Depth of Knowledge (Section 5)

DOK: 4
Curriculum: Mechatronics II

Curricular Unit: Test Equipment (Electronics II Portion)

Instructional: I. Operation of test and measurement equipment

Standard Alignments (Section 2)

| SCCLE: SC1.1.B (Physical Science); SC7.1.A (Physical Science) |
| Knowledge: (CA) 1,3,4 (MA) 1 (CA) 3 |
| CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4; N-RN.2; N-Q.1; A-CED.4 |
| NETS: 3b-d |
| Performance: 1.2, 1.4, 3.1, 4.1 |

Unit (Section 3)

Learning Targets:

- **Measure:**
 - voltage, time, and frequency using an oscilloscope
 - voltage, current, and resistance using multimeters (e.g., VOM, EVM, and DVM)

- **Operate signal generators (e.g., audio, RF, and Function)**

Instructional Strategies:

- **Chapters 3-13:**
 - Lecture and discussion using Fowler and Schuler PowerPoints
 - Perform labs assigned from Fowler and Schuler lab book
 - Read and answer chapter:
 - self-test questions
 - review questions
 of Fowler and Schuler text
 - Demonstrate skills collaboratively and individually using simulation and virtual lab software
 - Complete relevant live work when available

Assessments/Evaluations:

- **Formative assessment of:**
 - Fowler and Schuler PowerPoint quizzes
 - Formative assessment of chapters 3-13 self-tests, review questions, and worksheets
- **Two lab evaluations:**
 - One formative
 - One summative
 - *Electricity and Electronics* textbook chapters 3-13 summative tests
 - Summative/formative assessment of relevant live work when available
Sample Assessment Questions:

- Does an iron-vane movement respond to alternating current, direct current, or both?

Instructional Resources/Tools:

- *Electronics Principles and Applications* (Richard J. Fowler; Charles A. Schuler):
 - textbooks
 - lab manuals
- Multisim computer simulation software
- ETCAI training software

Cross Curricular Connections:

- **ELA:**
 - Technical reading
 - Writing
 - Discussion
- **Math:**
 - Number sense
 - Solving problems with formulas

Depth of Knowledge (Section 5)

DOK: 3
Curriculum: Mechatronics II

Curricular Unit: Soldering, Construction of Circuits (Electronics II Portion)

Instructional: J. Construct circuits consistent with industry and safety standards

Standard Alignments (Section 2)

<table>
<thead>
<tr>
<th>GLE/CLE: N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge: (CA) 3</td>
</tr>
<tr>
<td>CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4</td>
</tr>
<tr>
<td>NETS: 3b,c</td>
</tr>
<tr>
<td>Performance: 1.8, 1.10, 3.1, 3.2</td>
</tr>
</tbody>
</table>

Unit (Section 3)

Learning Targets:

- Construct multistage circuits according to schematic diagrams
- Surface mount solder and desolder components (e.g., defective and replacement) to IPC standards
- Thru-Hole solder and desolder components (e.g., defective and replacement)
- Troubleshooting soldering kits the students construct

Instructional Strategies:

- Textbooks: *Electricity, Electronics, Digital*
- Soldering handouts
- Students will:
 - solder and desolder various electronic components in printed circuit boards
 - build functional electronic devices from soldered board work kits

Assessments/Evaluations:

- Formative:
 - Soldering techniques observed by the teacher of student demonstration/performance
 - Unit questions
 - Teacher created summative:
 - projects
 - practical exam
 - tests
- Lab evaluations formative/summative by the teacher – assessed using informal observation
- Summative/formative assessment of relevant live work when available
Sample Assessment Questions:

- What are the six parts of a complete circuit?

Instructional Resources/Tools:

- Electronic supplies
- YouTube videos on soldering
- Teacher created:
 - PowerPoints
 - handouts

Cross Curricular Connections:

- ELA:
 - Technical reading
 - Writing
 - Discussion

Depth of Knowledge (Section 5)

DOK: 3
Curriculum: Mechatronics II

Curricular Unit: Leadership (Both Electronics and Robotics)

Instructional: K. Demonstrate leadership skills in the classroom, industry, and society

Standard Alignments (Section 2)

<table>
<thead>
<tr>
<th>MGGLE: PS.1.C; CD.9.A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSCLE: ECP.4.A</td>
</tr>
<tr>
<td>Knowledge: (CA) 1,4,7 (SS) 6</td>
</tr>
<tr>
<td>CCSS: 11-12.WHST.4; 11-12.WHST.5; 11-12.WHST.6</td>
</tr>
<tr>
<td>NETS: 1b; 6a,b</td>
</tr>
<tr>
<td>Performance: 1.4, 1.8, 1.10, 2.1</td>
</tr>
</tbody>
</table>

Unit (Section 3)

<table>
<thead>
<tr>
<th>Learning Targets:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Demonstrate an understanding of SkillsUSA, its structure, and activities</td>
</tr>
<tr>
<td>• Demonstrate an understanding of one’s personal values</td>
</tr>
<tr>
<td>• Perform tasks related to effective personal management skills</td>
</tr>
<tr>
<td>• Demonstrate interpersonal skills</td>
</tr>
<tr>
<td>• Demonstrate etiquette and courtesy</td>
</tr>
<tr>
<td>• Demonstrate effectiveness in oral and written communication</td>
</tr>
<tr>
<td>• Develop and maintain a code of professional ethics</td>
</tr>
<tr>
<td>• Maintain an appropriate professional appearance</td>
</tr>
<tr>
<td>• Perform tasks related to securing and terminating employment</td>
</tr>
<tr>
<td>• Perform basic parliamentary procedures in a group meeting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructional Strategies:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Students will develop leadership qualities through:</td>
</tr>
<tr>
<td>• character building exercises</td>
</tr>
<tr>
<td>• student organization involvement</td>
</tr>
<tr>
<td>• Leadership development will be observed by the teacher both in and out of the classroom:</td>
</tr>
<tr>
<td>• Skills USA meetings and functions</td>
</tr>
<tr>
<td>• Community service projects</td>
</tr>
<tr>
<td>• Fund raising activities</td>
</tr>
</tbody>
</table>
Assessments/Evaluations:
- Skills USA Leadership handbook – evaluated by a judge during competition
- Teacher observation

Sample Assessment Questions:
- What is the Skills USA pledge?

Instructional Resources/Tools:
- Websites:
 - MidMoCareers.com
 - Monster.com
 - Careerbuilder.com
 - BLS Occupational Outlook Handbook (online)
- Google Drive and Docs
- Computer

Cross Curricular Connections:
- ELA:
 - Technical reading
 - Writing
 - Discussion
- Model Guidance:
 - Citizenship skills
 - Personal skills for job success

Depth of Knowledge (Section 5)

DOK: 2
Curriculum: Mechatronics II

Curricular Unit: Precision and Timing (Robotics III Portion)

Instructional Unit: L. Design, construct, analyze, and troubleshoot an autonomously controlled soldering robot

Standard Alignments (Section 2)

<table>
<thead>
<tr>
<th>GLE/CLE: N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge: (CA) 3</td>
</tr>
<tr>
<td>CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4</td>
</tr>
<tr>
<td>NETS: 3b,c</td>
</tr>
<tr>
<td>Performance: 1.8, 1.10, 3.1, 3.2</td>
</tr>
</tbody>
</table>

Unit (Section 3)

Learning Targets:

- Program the robot using sensors to create precision and timing
- Execute programs utilizing shaft encoders
- Execute programs utilizing potentiometers
- Execute programs utilizing pushbuttons
- Create a list of positions that the robot will go to and return from

Instructional Strategies:

- The teacher will help, if needed, while trying to implement troubleshooting skills
- Instructional videos at Robotc.net VEX Cortex Curriculum: Movement, Sensors
- Intellitek REC curriculum:
 - Instructional videos
 - Reading material
 - Exercise
 - Lectures on various parts of the videos

Assessments/Evaluations:

- The students will be able to connect to the robot via VEXnet wireless keys
- Formative: Teacher observation of student demonstration of activities:
 - Design a soldering robot
 - Program:
 - shaft encoders
 - potentiometers
 - pushbuttons
 - Build the soldering robot and perform soldering with precision and correct timing
 - Keep detailed notes in Engineering notebooks
 - Work in teams of up to 4
- Summative: Students will be able to program their robot to perform above tasks within guidelines and present this to the teacher

Sample Assessment Questions:

- What real world applications do soldering robots have?

Instructional Resources/Tools:

- Robotc.net curriculum
- Intellitek REC curriculum

Cross Curricular Connections:

- ELA – Technical:
 - Reading
 - Writing
 - Discussion

Depth of Knowledge (Section 5)

DOK: 3
Curriculum: Mechatronics II

Curricular Unit: Nothing but Net Challenge (Robotics III Portion)

Instructional Unit: M. Design and compete with a robot that can launch a ball into a goal

Standard Alignments (Section 2)

| SCCLE: SC2.1.A (Physics I); SC7.1.A (Physics I) |
| Knowledge: (CA) 1,3 (MA) 4 (SC) 2 |
| CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4; N-Q.1; F-BF.3 |
| NETS: 3c; 4b; 6a |
| Performance: 3.1, 3.4, 4.5 |

Unit (Section 3)

Learning Targets:

- Design a robot that meets the specifications of the game, Nothing But Net, which involves designing ball launching systems
- Program the robot to meet the specifications of the game, Nothing But Net

Instructional Strategies:

- The teacher will help, if needed, while trying to implement troubleshooting skills
- Instructional videos at Robotc.net VEX Cortex curriculum: Movement, Sensors, Nothing but Net Game
- Intellitek REC curriculum:
 - Instructional videos
 - Reading material
 - Exercise
 - Lectures on various parts of the videos

Assessments/Evaluations:

- The students will be able to connect to the robot via VEXnet wireless keys
- Formative: Teacher observation of student demonstration of activities:
 - Design a robot that meets the Nothing but Net game specifications
 - Build a robot that meets the Nothing but Net game specifications
 - Program a robot that meets the Nothing but Net game specifications
 - Compete in the game against other students in the classroom
 - Keep detailed notes in Engineering notebooks as stated by the teacher
- Summative: Students will be able to perform above tasks within guidelines and present this to the teacher

Sample Assessment Questions:

- How did you decide on the method used to throw the balls into the goal?
Instructional Resources/Tools:

- Robotc.net curriculum
- Intellitek REC curriculum

Cross Curricular Connections:

- ELA – Technical:
 - Reading
 - Writing
 - Discussion
- Math: Number sense and recognize the relationship of various functions
- Science:
 - Investigate
 - Reason
 - Critical thinking
 - Analyze the motion of an object

Depth of Knowledge (Section 5)

DOK: 4
Curriculum: Mechatronics II

Curricular Unit: Tower Crane (Robotics III Portion)

Instructional Unit: N. Design and build a Tower Crane robot that utilizes a single support system

Standard Alignments (Section 2)

| SCCLE: SC2.1.A (Physics I); SC7.1.A (Physics I) |
| Knowledge: (CA) 1, 3 (MA) 4 (SC) 2 |
| CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4; N-Q.1; F-BF.3 |
| NETS: 3c; 4b; 6a |
| Performance: 3.1, 3.4, 4.5 |

Unit (Section 3)

Learning Targets:
- Design a tower crane using trigonometric functions to raise and lower loads while moving
- Program a tower crane using trigonometric functions to raise and lower loads while moving
- Apply basic understanding of center support systems

Instructional Strategies:
- The teacher will help, if needed, while trying to implement troubleshooting skills
- Instructional videos at Robotc.net VEX Cortex curriculum: Movement, Sensors, The Game
- **Intellitek REC curriculum:**
 - Instructional videos
 - Reading material
 - Exercise
 - Lectures on various parts of the videos

Assessments/Evaluations:
- Formative: Teacher observation of student demonstration of activities:
 - Design a robot that lifts a minimum of 5 lbs.
 - Build a robot that is able to move loads from one spot to another without lowering or raising
 - Program a robot that can maintain the load to its furthest reach
 - Keep detailed notes in Engineering notebooks as stated by the teacher
- Summative: Students will be able to perform above tasks within guidelines and present this to the teacher
Sample Assessment Questions:

- What is the mathematical function used to keep a load steady while moving outward and inward on the crane?

Instructional Resources/Tools:

- Robote.net curriculum
- Intellitek REC curriculum

Cross Curricular Connections:

- **ELA – Technical:**
 - Reading
 - Writing
 - Discussion
- **Math:** Number sense and recognize the relationship of various functions
- **Science:**
 - Investigate
 - Reason
 - Critical thinking
 - Analyze the motion of an object

Depth of Knowledge (Section 5)

DOK: 4
Curriculum: Mechatronics II

Curricular Unit: PID Control (Proportional-Integral-Derivative) (Robotics III Portion)

Instructional Unit: O. Design, construct, analyze, and troubleshoot a Line Alignment robot that utilizes PID control

Standard Alignments (Section 2)

<table>
<thead>
<tr>
<th>SCCLE:</th>
<th>SC2.1.A (Physics I); SC7.1.A (Physics I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge:</td>
<td>(CA) 1,3 (MA) 4 (SC) 2</td>
</tr>
<tr>
<td>CCSS:</td>
<td>11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4; N-Q.1; F-BF.3</td>
</tr>
<tr>
<td>NETS:</td>
<td>3c; 4b; 6a</td>
</tr>
<tr>
<td>Performance:</td>
<td>3.1, 3.4, 4.5</td>
</tr>
</tbody>
</table>

Unit (Section 3)

Learning Targets:

- Design a robot that utilizes control loop feedback mechanisms such as shaft encoders
- Program a robot that utilizes control loop feedback mechanisms
- Troubleshoot problems involved with PID control

Instructional Strategies:

- The teacher will help, if needed, while trying to implement troubleshooting skills
- Instructional videos at Robotc.net VEX Cortex curriculum: Movement, Sensors, The Game
- Intellitek REC curriculum:
 - Instructional videos
 - Reading material
 - Exercise
 - Lectures on various parts of the videos

Assessments/Evaluations:

- Formative: Teacher observation of student demonstration of activities:
 - Design a robot that drives until it sees a line on the floor then moves back to align itself to the line autonomously
 - Program a robot that can align itself in at full speed
 - Keep detailed notes in Engineering notebooks as stated by the teacher
- Summative: Students will be able to perform above tasks within guidelines and present this to the teacher

Sample Assessment Questions:

- What enables the robot to know how far to back up?
Instructional Resources/Tools:
- *Robotc.net* curriculum
- *Intellitek REC* curriculum

Cross Curricular Connections:
- **ELA – Technical:**
 - Reading
 - Writing
 - Discussion
- **Math:** Number sense and recognize the relationship of various functions
- **Science:**
 - Investigate
 - Reason
 - Critical thinking
 - Analyze the motion of an object

Depth of Knowledge (Section 5)
DOK: 4
Curriculum: Mechatronics II

Curricular Unit: Synchronization Based on Speed (Robotics III Portion)

Instructional Unit: P. Design, construct, analyze, and troubleshoot an automatic transmission

Standard Alignments (Section 2)

- SCCLE: SC2.1.A (Physics I); SC7.1.A (Physics I)
- Knowledge: (CA) 1,3 (MA) 4 (SC) 2
- CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4; N-Q.1; F-BF.3
- NETS: 3c; 4b; 6a
- Performance: 3.1, 3.4, 4.5

Unit (Section 3)

Learning Targets:

- Design a robot that utilizes multiple gear ratios
- Program a robot that utilizes multiple gear ratios
- Troubleshoot problems involving synchronization at set speed

Instructional Strategies:

- The teacher will help, if needed, while trying to implement troubleshooting skills
- Instructional videos at Robotc.net VEX Cortex curriculum: Movement, Sensors, YouTube
- Intellitek REC curriculum:
 - Instructional videos
 - Reading material
 - Exercise
- Lectures on various parts of the videos

Assessments/Evaluations:

- Formative: Teacher observation of student demonstration of activities:
 - Design a robot that drives an output shaft that mimics an automatic transmission and shifts gears autonomously
 - Program a robot that can shift based on speed determined by a shaft encoder or another appropriate sensor
 - Keep detailed notes in Engineering notebooks as stated by the teacher
- Summative: Students will be able to perform above tasks within guidelines and present this to the teacher

Sample Assessment Questions:

- What sensor did you choose to decide when to shift?
Instructional Resources/Tools:

- Robotc.net curriculum
- Intellitek REC curriculum

Cross Curricular Connections:

- ELA – Technical:
 - Reading
 - Writing
 - Discussion
- Math: Number sense and recognize the relationship of various functions
- Science:
 - Investigate
 - Reason
 - Critical thinking
 - Analyze the motion of an object

Depth of Knowledge (Section 5)

DOK: 4
Curriculum: Mechatronics II

Curricular Unit: FESTO Basic Level Pneumatics (Robotics III Portion)

Instructional Unit: Q. Introduction to basic level pneumatics trainers

Standard Alignments (Section 2)

| SCCLE: SC2.1.A (Physics I); SC7.1.A (Physics I) |
| Knowledge: (CA) 1,3 (MA) 4 (SC) 2 |
| CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4; N-Q.1; F-BF.3 |
| NETS: 3c; 4b; 6a |
| Performance: 3.1, 3.4, 4.5 |

Unit (Section 3)

Learning Targets:

- Design, construct, troubleshoot, and repair:
 - manual control valves
 - relays
 - air compressors
 - industrial control switches
- Manipulate FluidSIM software for control of the Trainer System
- Set-up mode of operation of a single-acting cylinder
- Set-up mode of operation of a 3/2-way valve
- Recognize and sketch the various types of actuation for directional control valves

Instructional Strategies:

- The teacher will help, if needed, while trying to implement troubleshooting skills
- Instructional videos and written material from:
 - *FESTO Basic Level Pneumatics Trainer*
 - *UCANDO:*
 - *Troubleshooting Relay Logic Systems*
 - *Troubleshooting PLC’s*
 - Lectures on various parts of the videos and written material

Assessments/Evaluations:

- Formative: Complete practice exercises provided by FESTO MecLab trainer curriculum
- Summative: Comprehensive performance examination presented to the teacher upon completion of units
Sample Assessment Questions:

- What parts make up a single-acting cylinder?

Instructional Resources/Tools:

- **FESTO: Basic Level Pneumatics Trainer**
 - **UCANDO:**
 - *Troubleshooting Relay Logic Systems*
 - *Troubleshooting PLC’s*

Cross Curricular Connections:

- ELA – Technical:
 - Reading
 - Writing
 - Discussion
- Math: Number sense and recognize the relationship of various functions
- Science:
 - Investigate
 - Reason
 - Critical thinking
 - Analyze the motion of an object

Depth of Knowledge (Section 5)

DOK: 4
Curriculum: Mechatronics II

Curricular Unit: FESTO Basic Level Pneumatics (Robotics III Portion)

Instructional Unit: R. Construct, utilize, analyze, and troubleshoot cylinders and 5/2-way valves

Standard Alignments (Section 2)

| SCCLE: SC2.1.A (Physics I); SC7.1.A (Physics I) |
| Knowledge: (CA) 1,3 (MA) 4 (SC) 2 |
| CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4; N-Q.1; F-BF.3 |
| NETS: 3c; 4b; 6a |
| Performance: 3.1, 3.4, 4.5 |

Unit (Section 3)

Learning Targets:

- Explain and set up direct actuation
- Set-up mode of operation of a double-acting cylinder
- Set-up mode of operation of a 5/2-way valve
- Explain and set up indirect actuation
- Set-up mode of operation of a 5/2-way valve with pneumatic actuation

Instructional Strategies:

- The teacher will help, if needed, while trying to implement troubleshooting skills
- Instructional videos and written material from:
 - *FESTO Basic Level Pneumatics Trainer*
 - *UCANDO:*
 - *Troubleshooting Relay Logic Systems*
 - *Troubleshooting PLC’s*
- Lectures on various parts of the videos and written material

Assessments/Evaluations:

- Formative: Complete practice exercises provided by *FESTO MecLab* trainer curriculum
- Summative: Comprehensive performance examination presented to the teacher upon completion of units

Sample Assessment Questions:

- Are sensors needed to determine actuation distance?
Instructional Resources/Tools:

- *FESTO: Basic Level Pneumatics Curriculum*
- *UCANDO:*
 - *Troubleshooting Relay Logic Systems*
 - *Troubleshooting PLC’s*

Cross Curricular Connections:

- **ELA – Technical:**
 - Reading
 - Writing
 - Discussion
- **Math:** Number sense and recognize the relationship of various functions
- **Science:**
 - Investigate
 - Reason
 - Critical thinking
 - Analyze the motion of an object

Depth of Knowledge (Section 5)

DOK: 4
Curriculum: Mechatronics II

Curricular Unit: FESTO Basic Level Pneumatics (Robotics III Portion)

Instructional Unit: S. Construct, utilize, analyze, and troubleshoot signaling elements, control elements, and flow control

Standard Alignments (Section 2)

| SCCLE: SC2.1.A (Physics I); SC7.1.A (Physics I) |
| Knowledge: (CA) 1, 3 (MA) 4 (SC) 2 |
| CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4; N-Q.1; F-BF.3 |
| NETS: 3c; 4b; 6a |
| Performance: 3.1, 3.4, 4.5 |

Unit (Section 3)

Learning Targets:

- Differentiate between a signaling element and a control element
- Measure pressure in pneumatic control systems
- Differentiate between the various types of flow control and use them in accordance with specifications
- Adjust cylinder advancing and retracting speeds
- Construct and troubleshoot one type of signal storage in pneumatic control systems

Instructional Strategies:

- The teacher will help, if needed, while trying to implement troubleshooting skills
- Instructional videos and written material from:
 - *FESTO Basic Level Pneumatics Trainer*
 - *UCANDO:*
 - *Troubleshooting Relay Logic Systems*
 - *Troubleshooting PLC’s*
- Lectures on various parts of the videos and written material

Assessments/Evaluations:

- Formative: Complete practice exercises provided by FESTO MecLab trainer curriculum
- Summative: Comprehensive performance examination presented to the teacher upon completion of units

Sample Assessment Questions:

- How do you measure cylinder advancing and retracting speeds?
<table>
<thead>
<tr>
<th>Instructional Resources/Tools:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• FESTO: Basic Level Pneumatics Curriculum</td>
</tr>
</tbody>
</table>
| • *UCANDO:*
| • *Troubleshooting Relay Logic Systems* |
| • *Troubleshooting PLC’s* |

<table>
<thead>
<tr>
<th>Cross Curricular Connections:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ELA – Technical:</td>
</tr>
<tr>
<td>• Reading</td>
</tr>
<tr>
<td>• Writing</td>
</tr>
<tr>
<td>• Discussion</td>
</tr>
<tr>
<td>• Math: Number sense and recognize the relationship of various functions</td>
</tr>
<tr>
<td>• Science:</td>
</tr>
<tr>
<td>• Investigate</td>
</tr>
<tr>
<td>• Reason</td>
</tr>
<tr>
<td>• Critical thinking</td>
</tr>
<tr>
<td>• Analyze the motion of an object</td>
</tr>
</tbody>
</table>

Depth of Knowledge (Section 5)

DOK: 4
Curriculum: Mechatronics II

Curricular Unit: FESTO Basic Level Pneumatics (Robotics III Portion)

Instructional Unit: T. Construct, utilize, analyze, and troubleshoot logic operations, latching circuits, and combinational logic operations

Standard Alignments (Section 2)

<table>
<thead>
<tr>
<th>SCCLE:</th>
<th>SC2.1.A (Physics I); SC7.1.A (Physics I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge:</td>
<td>(CA) 1,3 (MA) 4 (SC) 2</td>
</tr>
<tr>
<td>CCSS:</td>
<td>11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4; N-Q.1; F-BF.3</td>
</tr>
<tr>
<td>NETS:</td>
<td>3c; 4b; 6a</td>
</tr>
<tr>
<td>Performance:</td>
<td>3.1, 3.4, 4.5</td>
</tr>
</tbody>
</table>

Unit (Section 3)

Learning Targets:
- Explain and implement AND/OR/NOT logic operations
- Explain and set up latching circuits
- Set up and troubleshoot one option for end-position sensing in cylinders
- Combine logic operations

Instructional Strategies:
- The teacher will help, if needed, while trying to implement troubleshooting skills
- Instructional videos and written material from:
 - FESTO Basic Level Pneumatics Trainer
 - UCANDO:
 - Troubleshooting Relay Logic Systems
 - Troubleshooting PLC’s
- Lectures on various parts of the videos and written material

Assessments/Evaluations:
- Formative: Complete practice exercises provided by FESTO MecLab trainer curriculum
- Summative: Comprehensive performance examination presented to the teacher upon completion of units

Sample Assessment Questions:
- What types of sensors are used for end-position sensing?
<table>
<thead>
<tr>
<th>Instructional Resources/Tools:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• FESTO: Basic Level Pneumatics Curriculum</td>
</tr>
<tr>
<td>• UCANDO:</td>
</tr>
<tr>
<td>• Troubleshooting Relay Logic Systems</td>
</tr>
<tr>
<td>• Troubleshooting PLC’s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cross Curricular Connections:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ELA – Technical:</td>
</tr>
<tr>
<td>• Reading</td>
</tr>
<tr>
<td>• Writing</td>
</tr>
<tr>
<td>• Discussion</td>
</tr>
<tr>
<td>• Math: Number sense and recognize the relationship of various functions</td>
</tr>
<tr>
<td>• Science:</td>
</tr>
<tr>
<td>• Investigate</td>
</tr>
<tr>
<td>• Reason</td>
</tr>
<tr>
<td>• Critical thinking</td>
</tr>
<tr>
<td>• Analyze the motion of an object</td>
</tr>
</tbody>
</table>

Depth of Knowledge (Section 5)

DOK: 4
Curriculum: Mechatronics II

Curricular Unit: FESTO Basic Level Pneumatics (Robotics III Portion)

Instructional Unit: U. Construct, utilize, analyze, and troubleshoot magnetic proximity switches, pressure sequence valves, and pressure-dependent control systems

Standard Alignments (Section 2)

| SCCLE: SC2.1.A (Physics I); SC7.1.A (Physics I) |
| Knowledge: (CA) 1,3 (MA) 4 (SC) 2 |
| CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4; N-Q.1; F-BF.3 |
| NETS: 3c; 4b; 6a |
| Performance: 3.1, 3.4, 4.5 |

Unit (Section 3)

Learning Targets:

- Set-up mode of operation of a magnetic proximity switch
- Differentiate between 5/2-way valves and select and use them in accordance with specifications
- Develop and troubleshoot existing circuits
- Set-up mode of operation of a pressure sequence valve
- Set up pressure-dependent control systems
- Set-up mode of operation of a pressure regulator

Instructional Strategies:

- The teacher will help, if needed, while trying to implement troubleshooting skills
- Instructional videos and written material from:
 - *FESTO Basic Level Pneumatics Trainer*
 - *UCANDO:*
 - *Troubleshooting Relay Logic Systems*
 - *Troubleshooting PLC’s*
- Lectures on various parts of the videos and written material

Assessments/Evaluations:

- Formative: Complete practice exercises provided by FESTO MecLab trainer curriculum
- Summative: Comprehensive performance examination presented to the teacher upon completion of units
Sample Assessment Questions:

- How do magnetic proximity switches work?

Instructional Resources/Tools:

- *FESTO: Basic Level Pneumatics Curriculum*
- *UCANDO:*
 - Troubleshooting Relay Logic Systems
 - Troubleshooting PLC’s

Cross Curricular Connections:

- ELA – Technical:
 - Reading
 - Writing
 - Discussion
- Math: Number sense and recognize the relationship of various functions
- Science:
 - Investigate
 - Reason
 - Critical thinking
 - Analyze the motion of an object

Depth of Knowledge (Section 5)

DOK: 4
Curriculum: Mechatronics II

Curricular Unit: FESTO Basic Level Pneumatics (Robotics III Portion)

Instructional Unit: V. Construct, utilize, analyze, and troubleshoot time delay valves, oscillating motion, and multiple cylinders

Standard Alignments (Section 2)

<table>
<thead>
<tr>
<th>SCCLE: SC2.1.A (Physics I); SC7.1.A (Physics I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge: (CA) 1, 3 (MA) 4 (SC) 2</td>
</tr>
<tr>
<td>CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4; N-Q.1; F-BF.3</td>
</tr>
<tr>
<td>NETS: 3c; 4b; 6a</td>
</tr>
<tr>
<td>Performance: 3.1, 3.4, 4.5</td>
</tr>
</tbody>
</table>

Unit (Section 3)

Learning Targets:

- Analyze existing circuits and optimize them in accordance with specifications
- Set up mode of operation of a time-delay valve
- Set up circuits with oscillating motion
- Set up time delay valves in accordance with specific constraints
- Analyze and construct circuits with two cylinders

Instructional Strategies:

- The teacher will help, if needed, while trying to implement troubleshooting skills
- Instructional videos and written material from:
 - *FESTO Basic Level Pneumatics Trainer*
 - *UCANDO:*
 - *Troubleshooting Relay Logic Systems*
 - *Troubleshooting PLC’s*
 - Lectures on various parts of the videos and written material

Assessments/Evaluations:

- Formative: Complete practice exercises provided by FESTO MecLab trainer curriculum
- Summative: Comprehensive performance examination presented to the teacher upon completion of units

Sample Assessment Questions:

- Do time-delay valves have fail-safe measures?
Instructional Resources/Tools:

- *FESTO: Basic Level Pneumatics Curriculum*
- *UCANDO:*
 - Troubleshooting Relay Logic Systems
 - Troubleshooting PLC’s

Cross Curricular Connections:

- ELA – Technical:
 - Reading
 - Writing
 - Discussion
- Math: Number sense and recognize the relationship of various functions
- Science:
 - Investigate
 - Reason
 - Critical thinking
 - Analyze the motion of an object

Depth of Knowledge (Section 5)

DOK: 4
Curriculum: Robotics IV

Curricular Unit: FESTO MecLab Mechatronics Training System (Part A) (Robotics IV Portion)

Instructional Unit: W. Create a program that enables students to analyze, operate, and troubleshoot industrial machines and components

Standard Alignments (Section 2)

| SCCLE: SC2.1.A (Physics I); SC7.1.A (Physics I) |
| Knowledge: (CA) 1,3 (MA) 4 (SC) 2 |
| CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4; N-Q.1; F-BF.3 |
| NETS: 3c; 4b; 6a |
| Performance: 3.1, 3.4, 4.5 |

Unit (Section 3)

Learning Targets:
- Identify machines and their function in a process
- Identify, connect, and troubleshoot industrial components
- Design circuits using FluidSIM software and its tools
- Identify, connect, and troubleshoot industrial component symbols and designations

Instructional Strategies:
- The instructor will help, if needed, while trying to implement troubleshooting skills
- Instructional videos and written material from:
 - FESTO MecLab Mechatronics Training System
 - UCANDO: Troubleshooting Relay Logic Systems, Troubleshooting PLC’s
- Lectures on various parts of the videos and written material

Assessments/Evaluations:
- Formative: Complete practice exercises provided by FESTO MecLab trainer curriculum
- Summative: Comprehensive performance examination presented to the instructor upon completion of units

Sample Assessment Questions:
- Where are the actuators located in FluidSIM?

Instructional Resources/Tools:
- FESTO: Basic level Pneumatics curriculum
- UCANDO: Troubleshooting Relay Logic Systems, Troubleshooting PLC’s
Cross Curricular Connections:

- **ELA:**
 - Technical reading
 - Writing
 - Discussion
- **Math:** Number sense and recognize the relationship of various functions
- **Science:**
 - Investigate, reason, and critical thinking
 - Analyze the motion of an object

Depth of Knowledge (Section 5)

DOK: 4
Curriculum: Robotics IV

Curricular Unit: FESTO MecLab Mechatronics Training System (Part B) (Robotics IV Portion)

Instructional Unit: X. Create a program that enables students to analyze, operate, and troubleshoot sequence of operations as well as pneumatic and electrical schematics

Standard Alignments (Section 2)

| SCCLE: SC2.1.A (Physics I); SC7.1.A (Physics I) Knowledge: (CA) 1,3 (MA) 4 (SC) 2 |
| CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4; N-Q.1; F-BF.3 |
| NETS: 3c; 4b; 6a |
| Performance: 3.1, 3.4, 4.5 |

Unit (Section 3)

Learning Targets:

- Design, create, and analyze sequence of operations
- Analyze pneumatic and electrical schematics

Instructional Strategies:

- The instructor will help if needed, while trying to implement troubleshooting skills
- Instructional videos and written material from:
 - FESTO MecLab Mechatronics Training System
 - UCANDO: Troubleshooting Relay Logic Systems, Troubleshooting PLC’s
 - Lectures on various parts of the videos and written material

Assessments/Evaluations:

- Formative: Complete practice exercises provided by FESTO MecLab trainer curriculum
- Summative: Comprehensive performance examination presented to the instructor upon completion of the units

Sample Assessment Questions:

- Can you use a flowchart to display a sequence of operation?

Instructional Resources/Tools:

- FESTO: Basic Level Pneumatics curriculum
- UCANDO: Troubleshooting Relay Logic Systems, Troubleshooting PLC’s
Cross Curricular Connections:

- ELA:
 - Technical reading
 - Writing
 - Discussion
- Math: Number sense and recognize the relationship of various functions
- Science:
 - Investigate, reason, and critical thinking
 - Analyze the motion of an object

Depth of Knowledge (Section 5)

DOK: 4
Curriculum: Robotics IV

Curricular Unit: FESTO MecLab Mechatronics Training System (Part C) (Robotics IV Portion)

Instructional Unit: Y. Create a program that enables students to analyze, operate, and troubleshoot linear actuators, relays, limit switches, and cylinders

Standard Alignments (Section 2)

| SCCLE: SC2.1.A (Physics I); SC7.1.A (Physics I) |
| Knowledge: (CA) 1,3 (MA) 4 (SC) 2 |
| CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4; N-Q.1; F-BF.3 |
| NETS: 3c; 4b; 6a |
| Performance: 3.1, 3.4, 4.5 |

Unit (Section 3)

Learning Targets:

- Demonstrate control of linear actuators
- Demonstrate control of relays
- Demonstrate control of limit switches
- Demonstrate structure, function and application of single-acting and double-acting cylinders

Instructional Strategies:

- The instructor will help, if needed, while trying to implement troubleshooting skills
- Instructional videos and written material from:
 - *FESTO MecLab Mechatronics Training System*
 - *UCANDO: Troubleshooting Relay Logic Systems, Troubleshooting PLC’s*
- Lectures on various parts of the videos and written material

Assessments/Evaluations:

- Formative: Complete practice exercises provided by *FESTO MecLab* trainer curriculum
- Summative: Comprehensive performance examination presented to the instructor upon completion of the units

Sample Assessment Questions:

- What is the difference between solid-state relays and mechanical relays?
Instructional Resources/Tools:

- *FESTO:* Basic level *Pneumatics* curriculum
- *UCANDO:* Troubleshooting Relay Logic Systems, Troubleshooting PLC’s

Cross Curricular Connections:

- ELA:
 - Technical reading
 - Writing
 - Discussion
- Math: Number sense and recognize the relationship of various functions
- Science:
 - Investigate, reason, and critical thinking
 - Analyze the motion of an object

Depth of Knowledge (Section 5)

DOK: 4
Curriculum: Robotics IV

Curricular Unit: FESTO MecLab Mechatronics Training System (Part D) (Robotics IV Portion)

Instructional Unit: Z01. Calculate parameters, actuation, valves, and circuits

Standard Alignments (Section 2)

| SCCLE: SC2.1.A (Physics I); SC7.1.A (Physics I) |
| Knowledge: (CA) 1,3 (MA) 4 (SC) 2 |
| CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4; N-Q.1; F-BF.3 |
| NETS: 3c; 4b; 6a |
| Performance: 3.1, 3.4, 4.5 |

Unit (Section 3)

Learning Targets:
- Demonstrate calculating basic parameters
- Demonstrate direct and indirect actuation
- Demonstrate application and function of 3/2 and 5/2-way valves
- Demonstrate the methods of actuation of directional control valves
- Analyze circuits

Instructional Strategies:
- The instructor will help, if needed, while trying to implement troubleshooting skills
- Instructional videos and written material from:
 - FESTO MecLab Mechatronics Training System
 - UCANDO: Troubleshooting Relay Logic Systems, Troubleshooting PLC’s
- Lectures on various parts of the videos and written material

Assessments/Evaluations:
- Formative: Complete practice exercises provided by FESTO MecLab trainer curriculum
- Summative: Comprehensive performance examination presented to the instructor upon completion of the units

Sample Assessment Questions:
- Does indirect actuation have limits?

Instructional Resources/Tools:
- FESTO: Basic level Pneumatics curriculum
- UCANDO: Troubleshooting Relay Logic Systems, Troubleshooting PLC’s
Cross Curricular Connections:

- **ELA:**
 - Technical reading
 - Writing
 - Discussion
- **Math:** Number sense and recognize the relationship of various functions
- **Science:**
 - Investigate, reason, and critical thinking
 - Analyze the motion of an object

Depth of Knowledge (Section 5)

DOK: 4
Curriculum: Robotics IV

Curricular Unit: FESTO MecLab Mechatronics Training System (Part E) (Robotics IV Portion)

Instructional Unit: Z02. Create a program that enables students to analyze, operate, and troubleshoot pressure measurement, pressure control systems, flow control, and latching circuits

Standard Alignments (Section 2)

| SCCLE: SC2.1.A (Physics I); SC7.1.A (Physics I) |
| Knowledge: (CA) 1,3 (MA) 4 (SC) 2 |
| CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4; N-Q.1; F-BF.3 |
| NETS: 3c; 4b; 6a |
| Performance: 3.1, 3.4, 4.5 |

Unit (Section 3)

Learning Targets:

- Demonstrate the options for pressure measurement
- Demonstrate pressure-dependent control systems
- Distinguish between different flow control methods and how to use them as intended
- Build latching circuits

Instructional Strategies:

- The instructor will help, if needed, while trying to implement troubleshooting skills
- Instructional videos and written material from:
 - *FESTO MecLab Mechatronics Training System*
 - *UCANDO: Troubleshooting Relay Logic Systems, Troubleshooting PLC’s*
- Lectures on various parts of the videos and written material

Assessments/Evaluations:

- Formative: Complete practice exercises provided by *FESTO MecLab* trainer curriculum
- Summative: Comprehensive performance examination presented to the instructor upon completion of the units

Sample Assessment Questions:

- Are there anti-backflow control valves in pneumatics?

Instructional Resources/Tools:

- *FESTO: Basic level Pneumatics* curriculum
- *UCANDO: Troubleshooting Relay Logic Systems, Troubleshooting PLC’s*
Cross Curricular Connections:

- ELA:
 - Technical reading
 - Writing
 - Discussion
- Math: Number sense and recognize the relationship of various functions
- Science:
 - Investigate, reason, and critical thinking
 - Analyze the motion of an object

Depth of Knowledge (Section 5)

DOK: 4
Curriculum: Robotics IV

Curricular Unit: SkillsUSA Competition (Robotics IV Portion)

Instructional Unit: Z03. Utilize electronic and/or robotic knowledge and skills to perform to competition specifications

Standard Alignments (Section 2)

<table>
<thead>
<tr>
<th>SCCLE: SC2.1.A (Physics I); SC7.1.A (Physics I)</th>
<th>Knowledge: (CA) 1,3 (MA) 4 (SC) 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSS: 11-12.SL.1; 11-12.L.4; 11-12.RST.3; 11-12.RST.4; 11-12.WHST.4; N-Q.1; F-BF.3</td>
<td>NETS: 3c; 4b; 6a</td>
</tr>
<tr>
<td>Performance: 3.1, 3.4, 4.5</td>
<td></td>
</tr>
</tbody>
</table>

Unit (Section 3)

Learning Targets:

- Interpret instructions as presented by SkillsUSA competition
- Design, create, and troubleshoot the given competition

Instructional Strategies:

- The instructor will help, if needed, while trying to implement troubleshooting skills
- Instructional videos and written material from:
 - FESTO MecLab Mechatronics Training System
 - UCANDO: Troubleshooting Relay Logic Systems, Troubleshooting PLC’s
 - Robotc.net Vex Cortex Curriculum
 - Intellitek REC Curriculum

Assessments/Evaluations:

- Formative: Complete practice exercises provided by instructor per competition guidelines
- Summative: Comprehensive performance examination presented to the instructor upon completion of the units and/or competition results

Sample Assessment Questions:

- What would you have done differently in order to better achieve your desired results?

Instructional Resources/Tools:

- FESTO: Basic level Pneumatics curriculum
- UCANDO: Troubleshooting Relay Logic Systems, Troubleshooting PLC’s
- Robotc.net Vex Cortex curriculum
- Intellitek REC curriculum
Cross Curricular Connections:

- ELA:
 - Technical reading
 - Writing
 - Discussion
- Math: Number sense and recognize the relationship of various functions
- Science:
 - Investigate, reason, and critical thinking
 - Analyze the motion of an object

Depth of Knowledge (Section 5)

DOK: 4