

JC Schools Physical Science Yearly Science Standards

	Overarching Standards 9-12.ETS1.A.1
	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants
	9-12.ETS1.A.2 Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering
	9-12.ETS1.B.1 Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts
	9-12.ETS1.B.2 Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem
Units	Priority Standards
Unit 0 How to be a scientist	 9-12.PS4.A.1 USE mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media 9-12.ETS1.B.1 EVALUATE a solution to a complex real world problem based on prioritized criteria and trade offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural and environmental impacts 9-12.PS1.A.2
	5-12.F31.A.2

	CONSTRUCT and REVISE an explanation for the products of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table and knowledge of the patterns of chemical properties
	9-12.ETS1.B2 USE <u>a computer simulation to model the impact of proposed solutions to a complex real world problem with</u> <u>numerous criteria and constraints on interactions within and between systems relevant to the problem</u>
	9-12.PS3.A.1 CREATE a computational model to calculate the change in the energy of one component is a system when the changes in energy are known.
	9-12.ETS1.B.1 EVALUATE a solution to a complex real world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts
Unit 1 Structures of Matter	9-12.PS1.A.1 USE the organization of the periodic table to PREDICT the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms
Unit 2 Nuclear Processes	9-12.PS1.C.1 USE symbolic representations to ILLUSTRATE the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay
Unit 3	9-12.PS1.A.3 PLAN and CONDUCT an investigation to gather evidence to compare physical and chemical properties of substances such as melting point, boiling point, vapor pressure, surface tension, and chemical reactivity to INFER the relative strength of attractive forces between particles

Unit 4	9-12.PS1.A.2 CONSTRUCT and REVISE an explanation for the products of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties
Chemical Interactions	properties 9-12.PS1.A.5 DEVELOP a model to illustrate that the release or absorption of energy from a chemical reaction system
	depends upon the changes in total bond energy 9-12.PS1.B.1 APPLY scientific principles and evidence to PROVIDE an explanation about the effects of changing the
	temperature or concentration of the reacting particles on the rate at which a reaction occurs 9-12.PS1.B.2 REFINE the design of a chemical system by specifying a change in conditions that would alter the amount
	Jan 30of products at equilibrium 9-12.PS1.B.3 USE symbolic representations and mathematical calculations to SUPPORT the claim that atoms, and therefore mass, are conserved during a chemical reaction
Unit 5 Forces and	9-12 PS2.A.1 ANALYZE data to SUPPORT and VERIFY the concepts expressed by Newton's 2nd Law of motion, as it describes the mathematical relationship among the net force on a macroscopic object, its mass, and its
Interactions	acceleration 9-12.PS2.A.2 USE mathematical representations to SUPPORT and VERIFY the concepts that the total momentum of a system of objects is conserved when there is no net force on the system
	9-12.PS2.A.3 APPLY <u>scientific principles of motion and momentum</u> to DESIGN, EVALUATE, and REFINE <u>a device that</u> minimizes the force on a macroscopic object during a collision
	9-12.PS2.B.1 USE <u>mathematical representations of Newton's Law of Gravitation to</u> DESCRIBE and <u>PREDICT</u> the gravitational forces between objects

	9-12.PS2.B.2 PLAN and CONDUCT an investigation to provide evidence that an electric current can produce a magnetic field and that changing magnetic field can produce an electric current
Unit 6 Energy	9-12.PS3.A.2 DEVELOP and USE models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative position of particles (objects)
	9-12.PS3.A.3 DESIGN, BUILD and REFINE a device that works within given constraints to convert one form of energy into another form of energy
	9-12.PS3.A.1 CREATE a computational model to CALCULATE the change in the energy of one component in a system when the changes in energy are known
	9-12.PS3.B.1 PLAN and CONDUCT an investigation to provide evidence that the transfer of thermal energy when two components of different temperatures are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics)
	9-12.PS3.C.1 DEVELOP and USE a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to interaction
Unit 7	9-12.PS4.A.1 USE mathematical representations to SUPPORT a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media
Waves and Electromagnetic Radiation	9-12.PS4.A.2 EVALUATE the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model and that for some situations one model is more useful than the other
	9-12.PS4.B.1 COMMUNICATE technical information about how electromagnetic radiation interacts with matter
	9-12.PS4.B.2

EVALUATE the validity and reliability of claims in published materials of the effects that different
frequencies of electromagnetic radiation have when absorbed by matter